Journal Logo

You can read the full text of this article if you:

Access through Ovid
00019616-200711000-00008ReviewThe EndocrinologistThe Endocrinologist© 2007 Lippincott Williams & Wilkins, Inc.17November 2007 p 319-325Is Vitamin D Insufficiency Associated With Peripheral Neuropathy?CME Review Article #30Carlson, Amanda N. MD*; Kenny, Anne M. MD†*Resident of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut; and †Associate Professor of Medicine, Center on Aging, University of Connecticut Health Center, Farmington, Connecticut.The authors have disclosed that they have no significant relationships with or financial interests in any commercial company that pertains to this educational activity.Reprints: Anne M. Kenny, MD, Center on Aging, MC-5215, University of Connecticut Health Center, Farmington, CT 06030-5215. E-mail: [email protected] Continuing Medical Education Institute, Inc. has identified and resolved all faculty conflicts of interest regarding this educational activity.Chief Editor's Note: This article is the 30th of 35 that will be published in 2007 for which a total of up to 35 AMA PRA Category 1 Credits™ can be earned. Instructions for how credits can be earned precede the CME Examination at the back of this issue.AbstractThe effects of vitamin D on calcium and phosphate metabolism and bone formation are well studied. For many years, it was thought that the importance of vitamin D was confined to these roles, and the study of this hormone's activity in other tissues was neglected. In recent years, however, there has been a renewed interest among researchers in identifying other target organs for vitamin D, such as the central nervous system. Increasingly, it appears that vitamin D plays a role in nerve growth and maintenance and may have important pharmaceutical applications for treatment of neurodegenerative conditions. This review focuses on our growing understanding of the biology of vitamin D in the brain and the potential pathophysiologic and therapeutic relationships that exist between vitamin D and neuronal dysfunction.Learning ObjectivesGive examples of published reports suggesting that the brain, in addition to the liver and kidneys, may be a site of vitamin D metabolism.Appraise the evidence that vitamin D is a neuroactive substance that is able to induce neurotropins and neurotransmitters.Point out associations between vitamin D deficiency and neuropathy, particularly diabetic neuropathy, and possible opportunities for using vitamin D to treat neurodegenerative disorders.The effects of vitamin D on calcium and phosphate metabolism and bone formation are well studied. For many years, it was thought that the importance of vitamin D was confined to these roles, and the study of this hormone's activity in other tissues was neglected. In recent years, however, there has been a renewed interest among researchers in identifying other target organs for vitamin D, such as the central nervous system. Increasingly, it appears that vitamin D plays a role in nerve growth and maintenance and may have important pharmaceutical applications for treatment of neurodegenerative conditions. This review focuses on our growing understanding of the biology of vitamin D in the brain and the potential pathophysiologic and therapeutic relationships that exist between vitamin D and neuronal dysfunction.What Is Vitamin D?Synthesis and MetabolismWhile not classified as a steroid hormone, vitamin D has properties very similar to this group of molecules. Vitamin D exists in the body in 2 forms, vitamin D3 and vitamin D2. Vitamin D3 (cholecalciferol) is synthesized in the skin from a cholesterol-based precursor, 7-dehydrocholesterol, during sun exposure.1,2 It can also be obtained from natural sources such as cod and halibut liver, eggs, and fortified milk. Vitamin D2 (ergocalciferol) is available only in the diet, largely from irradiated vegetables.1 Vitamin D is highly fat soluble and diffuses passively from the lumen of the small intestine into the enterocytes via micelles. It is then secreted into the lymphatic system in chylomicrons, entering the circulation via the thoracic duct. Vitamin D is transported in the blood bound to a specific vitamin D binding protein and widely distributed in the adipose tissue of the body. Food sources supply only about 5% of the vitamin D requirement, so most of the hormone must be obtained from sunlight.3The principal active form is not cholecalciferol or ergocalciferol but a dihydroxylated metabolite of either. When circulating levels of 25-hydroxyvitamin D are low, adipocytes release vitamin D into the blood. The biologically inactive prohormone is first converted to 25-hydroxyvitamin D3 in the liver via addition of a hydroxyl group. The second hydroxylation reaction occurs in the proximal tubule of the kidney and produces 1,25 dihydroxyvitamin D3, the active form of vitamin D.3,4 This second step occurs under the tight control of PTH (which stimulates the reaction) and vitamin D and phosphate (both of which inhibit the process).3,4This process of vitamin D metabolism was classically thought to occur only in the liver and kidney. More recently, however, research has begun to accumulate that suggests that the brain may also be a site of vitamin D metabolism.3 Gascon-Barre and Huet5 showed that cholecalciferol crosses the canine and rodent blood-brain barriers. Stumpf et al6–9 noted that vitamin D is present in rat brain, with the greatest concentrations found in motor neurons, cranial motor nuclei, and the striae terminalis. Based on this research, it has been suggested that vitamin D may play a role in motor functions. Balabanova et al10 discovered the presence of vitamin D metabolites in human CSF, suggesting a role for vitamin D in the central nervous system. Neveu et al11,12 demonstrated that rat brain macrophages can convert 25-hydroxyvitamin D3 to 25-dihydroxyvitamin D3, a process previously thought to occur solely in the kidney.ActionsThe most well-studied actions of vitamin D are those involving calcium, phosphate, and skeletal homeostasis. In the duodenum, 1,25 dihydroxyvitamin D3 promotes calcium absorption by increasing the production of calcium channels, pumps, and binding proteins. In the kidney, vitamin D promotes calcium and phosphate reabsorption from the tubule. The overall effect of vitamin D on bone is to increase the flux of calcium into bone via increased calcium absorption from the intestine and kidney, which makes more calcium available to mineralize previously unmineralized osteoid.1The Vitamin D ReceptorThe functions of the activated vitamin D are mediated through the vitamin D receptor (VDR). The VDR belongs to the nuclear hormone receptor superfamily. Once ligand-activated, the VDR undergoes heterodimerization with the retinoid X receptor (the receptor of 9-cis-retinoic acid).13 After recruitment of coactivator proteins, this complex binds to specific DNA sequences of vitamin D–responsive genes to exert transcriptional effects.14–18 The VDR is not limited to the classic target tissues of bone, kidney, and intestine. Several researchers have demonstrated the presence of VDRs in distinct portions of the sensory, motor, and limbic systems of rat brain,19–22 as well as in the plasma membranes of chick brain.23 In situ hybridization studies confirmed the presence of the VDR in rat brain white matter and spinal cord.14Vitamin D DeficiencyOccult vitamin D deficiency is common. Worldwide, 24% of otherwise healthy adolescents have been noted to be deficient in vitamin D. In the United States alone, 9% of the adult population suffers from vitamin D deficiency. This number rises in the northern latitudes to 30% of Canadian adults, due to decreased sunlight, with a subsequent inability to synthesize vitamin D during several months of the year. Other populations at risk include those working in industrial regions, the institutionalized, the elderly and obese, and cultures in which the skin is kept covered (for example, veiled Muslim women).3Deficiency of vitamin D in children produces the disease rickets, in which bone has abnormal amounts of unmineralized osteoid. Because bone rigidity is diminished by this lack of mineralization, the long bones of the legs develop a characteristic “bowing” appearance. Rickets was first described in the mid-17th century by British researchers, and physicians in the late 19th century noted that consuming cod liver oil daily could reverse the problem. Once thought to have been vanquished, the problem of rickets is resurfacing not only in the northern latitudes but also in sunnier climates, particularly among African American infants and children.24,25In adults, vitamin D deficiency produces osteomalacia or contributes to osteoporosis. Microscopically, the bones appear very similar to the bones of children; however, since bone growth in adults is complete, bowing does not occur. Rather, as a compensatory increase in parathyroid hormone promotes bone resorption, the individual experiences a general decline in bone strength and becomes more prone to fractures.1 In one review of women with osteoporosis hospitalized for hip fractures, 50% had signs of vitamin D deficiency.26Vitamin D as a Neuroactive SubstanceInduction of Neurotrophins and NeurotransmittersVitamin D is a potent inducer of neurotrophins and neurotransmitters. Nerve growth factor (NGF), for example, is a protein that is required for the development and maintenance of several populations of neurons: in the peripheral nervous system, for sympathetic and sensory neuronal development, and in the central nervous system, for basal forebrain and striatal cholinergic neuronal development.27–30 Several studies have demonstrated that addition of 1,25 dihydroxyvitamin D3 to L929 mouse fibroblasts in vitro, rat astrocytes in vitro, and adult rat brain in vivo causes an increase in NGF mRNA and extracellular protein.12,31–36 These findings suggest that the compound operates primarily at a pretranslational level. Musiol and Feldman33 reported that treatment of mouse fibroblasts with 1,25 dihydroxyvitamin D3 resulted in up-regulation of the VDR, with subsequent induction of NGF. A vitamin D analogue, MC903, has also been shown to increase NGF synthesis.37 This is a finding of particular importance because, while pharmacological doses of 1,25 dihydroxyvitamin D3 induce hypercalcemia when administered systemically, MC903 is 100–200 times less potent with regard to its influence on calcium metabolism.38 Thus, this compound is less likely to induce hypercalcemia in vivo.3Glial cell line–derived neurotrophic factor (GDNF) is another growth factor that is induced by vitamin D. GDNF exerts neurotrophic effects on several neuronal populations, including dopaminergic neurons of the substantia nigra and noradrenergic neurons of the locus ceruleus.39–41 GDNF also prevents axotomy-induced motor neuron atrophy.42–44 When C6 glioma cells were exposed to 1,25 dihydroxyvitamin D3 in vitro, active vitamin D hormone receptor concentrations were increased, with a subsequent dose-dependent increase in GDNF mRNA concentrations.45 These results suggest that GDNF is regulated through a vitamin D response element (VDRE) in the GDNF DNA sequence.The molecular basis for induction of NGF and GDNF by 1,25 dihydroxyvitamin D3 is unknown. C-fos is a proto-oncogene that is involved in the regulation of the NGF gene.46,47 Increases in c-fos are known to occur after the increases in intracellular Ca++ that occur with opening of voltage-dependent L-type calcium channels.34,48 However, because levels of this proto-oncogene are not increased after exposure to vitamin D, control of NGF transcription by vitamin D appears to occur via a c-fos-independent pathway.36 An alternative hypothesis is that the vitamin D–mediated increase in these neurotrophins is controlled via up-regulation of neurotrophin receptors such as P75NTR. This low-affinity neurotrophin receptor binds to all neurotrophins with similar affinity. Naveilhan et al49 observed that, after treatment with 1,25 dihydroxyvitamin D3, an increase in P75NTR mRNA occurred in vitro (in cultured C6 glioma cells) and in vivo (in ovaries of adult female rats). These results suggest that vitamin D may have a role in the specific regulation of the low-affinity P75NTR neurotrophin receptor, presenting another possible mechanism for neurotrophin induction by vitamin D.Other biologic effects of vitamin D in the nervous system include the biosynthesis of enzymes involved in neurotransmitter synthesis, as well as substances involved in brain detoxification pathways. Vitamin D affects levels of choline acetyltransferase (ChAT), a synthetic enzyme of the neurotransmitter acetylcholine. Sonnenberg et al35 exposed rats to 1,25 dihydroxyvitamin D3 and found significant elevations in CAT activity in specific brain nuclei, especially the striae terminalis. Vitamin D also has effects on nitric oxide, a gaseous free radical involved in vasodilatation, neurotransmission, and cytotoxicity. In 2 separate studies, Garcion et al50,51 found that 1,25 dihydroxyvitamin D3 via intradermal or intracerebral injection caused inhibition of inducible nitric oxide synthase expression. INOS is an enzyme that synthesizes nitric oxide from l-arginine.50 In addition, 1,25 dihydroxyvitamin D3 increases levels of γ-glutamyl transpeptidase, an enzyme of central significance in brain detoxification pathways, in rat astrocytes in vitro and in rat brain in vivo.52,53Vitamin D and NeuropathyEpidemiology of NeuropathyThe causes of neuropathy are numerous and include diabetes, alcoholism, nutritional deficiencies, infection, malignancy, autoimmune disease, environmental or pharmacologic agents, and hereditary neuropathies, as well as idiopathic causes. Diabetic neuropathy is the most common form of peripheral nerve damage, affecting 8% of patients with diabetes at the time of diagnosis54 and 50% of patients with diabetes who have had the disease for 25 years.55 Up to 70% of patients with diabetes have some form of neuropathy, including impaired sensation or pain in the hands and feet, slowed digestion, and carpal tunnel syndrome. This impaired sensation puts the diabetic at increased risk of injury from a fall. In one study, which followed patients with neuropathy over 1 year, 65% of subjects sustained a fall-related injury, most commonly on irregular surfaces.56 In addition, one of the most dreaded complications of neuropathy is loss of a limb. Severe diabetic neuropathy is a major cause of lower-extremity amputations.57Vitamin D and NGF in Human Cell LinesIn the search for pharmacologic therapies for neuropathy, several researchers have focused on the potential role of NGF. NGF is depleted in the nerves of diabetic animals,58,59 and NGF deprivation reduces sensitivity to pain.16 In the skin, epidermal keratinocytes are the primary source of NGF, and decreased dermal NGF in patients with diabetic polyneuropathy correlates with neuropathic indicators of sensory and autonomic nerve function.60 Immunostaining of NGF in the affected skin of patients with diabetes shows lower amounts of NGF as compared with nondiabetics.60 In addition, administration of NGF protects against pathologic changes associated with neuropathy in experimental diabetic rats and Taxol-administered mice.60,61 These results suggest that the decreased NGF levels in epidermal keratinocytes contribute to the pathogenesis of peripheral neuropathy.Vitamin D analogues are effective at inducing NGF in human cell lines. Tacalcitol is a synthetic vitamin D3 analogue that binds to the VDR with an affinity comparable to that of 1,25 dihydroxyvitamin D3. This compound is used to treat psoriasis vulgaris and other keratinizing disorders. Fukuoka et al62 reported that exposure of human epidermal keratinocytes to tacalcitol results in dose-dependent up-regulation of NGF mRNA, suggesting a potential role for vitamin D3 compounds as therapeutic agents in NGF-depleted disorders.Vitamin D and Experimental DiabetesGiven the abundance of evidence that vitamin D is a neuroactive substance, this hormone may play a role in the pathogenesis and treatment of neuropathy, including diabetic neuropathy. Several researchers have reported a correlation between vitamin D insufficiency and diabetes. Studies in rats with uncontrolled experimental diabetes (induced by streptozotocin) have revealed decreased circulating levels of 1,25 dihydroxyvitamin D3, with normal levels of 25 hydroxyvitamin D. These changes are associated with depressed duodenal calcium absorption and subsequent up-regulation of the intestinal 1,25 dihydroxyvitamin D3 receptor.63,64 Interestingly, treatment with insulin restored serum concentrations of 1,25 dihydroxyvitamin D3 to normal in diabetic rats.63 Given the fact that serum concentrations of 25 hydroxyvitamin D remained normal in diabetic rats while serum concentrations of 1,25 dihydroxyvitamin D3 were strikingly lower, these data suggest a lesion in vitamin D metabolism in experimental diabetes. Such a lesion could be explained by either depressed renal 1-α hydroxylation as a result of diabetic nephropathy or increased destruction of 1,25 dihydroxyvitamin D3.63 Other, alternative explanations for the reduction in 1,25 dihydroxyvitamin D3 in the diabetic rat include a decrease in vitamin D binding proteins as a result of diabetic proteinuria,63 the presence of a metabolic acidosis, streptozotocin-induced toxicity, or hyperfunctioning adrenal glands with high levels of glucocorticoids.However, data from the study by Schneider et al63 were obtained just 10 days after induction of experimental diabetes, before signs of nephropathy became evident. In light of this fact, and in view of the reversal of 1,25 dihydroxyvitamin D3 depression brought about by insulin, it seems unlikely that depressed 1,25 dihydroxyvitamin D3 is the result of renal impairment in this experiment. On the other hand, perhaps insulin plays a direct role in modulation of the 1-α-hydroxylase enzyme in the kidney. Without further study, neither explanation can be eliminated.Other hypotheses seem unlikely as well. 25 Hydroxyvitamin D and 1,25 dihydroxyvitamin D3 are transported by the same carrier protein,65 and levels of 25 hydroxyvitamin D were normal in the aforementioned study,63 so decreased levels of carrier proteins likely do not play a role. Acidemia is another consideration for altered metabolism of 1,25 dihydroxyvitamin D3, but streptozocin-diabetic rats are not acidotic.66 Third, streptozotocin-induced toxicity might have a direct effect on the 1-α hydroxylase, but the half-life of this drug is very short, so this explanation seems unlikely. Last, diabetic rats have hyperfunctioning adrenal glands,67 but high levels of glucocorticoids actually increase the serum concentration of 1,25 dihydroxyvitamin D3 in rats and humans.68Other studies have demonstrated that depressed calcium absorption in diabetic rats can be alleviated by treatment with an extract of the South American plant Solanum malacoxylon,69 which contains a glycoside of 1,25 dihydroxyvitamin D3.70 In addition, human patients with diabetes have decreased bone formation and significant osteoporosis, with complications including vertebral body and femoral neck fractures, when compared with age-matched controls.71–76 For these reasons, it seems logical to continue investigation into possible derangements of vitamin D metabolism in human patients with diabetes.In rats with experimental diabetes, vitamin D and its derivatives have also been shown to be effective in inducing NGF.77,78 These results are important since deficiencies in NGF expression have been reported in skin and muscle of diabetic rats.58,59,79 CB109, one such vitamin D derivative, has been shown to effectively prevent neurotrophic deficits in a rat model. Riaz et al80 created an experimental diabetes model in rats by exposing them to streptozotocin, and then treated the rats with daily CB1093 for 2 months. At the end of the study, diabetic rats that did not receive the vitamin D3 analog had lower concentrations of sciatic nerve NGF than their nondiabetic counterparts. In contrast, diabetic rats treated with CB1093 showed an increase in sciatic nerve NGF.80 Neveu et al11 replicated these results, finding that rats with experimental diabetes showed an increase in NGF after treatment with 1,25 dihydroxyvitamin D3. Again, these studies support a pharmacological approach to diabetes, using vitamin D3 and its analogs to stimulate the reversal of neurotrophic deficits.Vitamin D and Neurodegenerative DiseasesThe exact molecular pathway by which vitamin D might prevent neurodegeneration remains unclear, but multiple mechanisms have been suggested. Alexianu et al81 postulated a role for vitamin D in the up-regulation of calcium binding proteins (CBPs) such as calbindin D28K. Calcium homeostasis within cells is mediated through multiple pathways, including sequestration of calcium by CBPs.82 Vitamin D is known to induce the synthesis of calbindin D28K in avian intestine and avian and mammalian kidney.83 In amyotrophic lateral sclerosis (ALS), a neurodegenerative disease, calcium homeostasis in motor neurons is altered such that nerve terminals contain significantly increased calcium, which may contribute to neuronal injury.84 Interestingly, the absence of CBPs in neurodegenerative diseases such as ALS correlates with early and severe neuronal degeneration, while motor neurons expressing calbindin D28K are more resistant to damage.81,85 Alexianu et al81 reported that intracerebral injection of 1,25 dihydroxyvitamin D in rats induced a 2-fold increase in calbindin D28K, suggesting a role for vitamin D in the regulation of calcium homeostasis and ultimate survival of ALS motor neurons.The suggestion that vitamin D plays a role in neurodegenerative disease is supported by research on the brains of Alzheimer patients. Sutherland et al83 examined Alzheimer hippocampal cells by in situ hybridization and found that, in comparison with Huntington controls, Alzheimer hippocampal cells had lower VDR message levels. In addition, VDR message levels correlated significantly with message levels of calbindin D28K in hippocampal cells. If vitamin D hormone regulates hippocampal calbindin D28K, it should follow that decreased availability of vitamin D, or of VDRs, would diminish calbindin D28K levels. The resulting reduction in calcium buffering capacity could increase the susceptibility of sensitive neurons to calcium-mediated cell death from prolonged exposure to high intracellular calcium levels. Indeed, Sutherland et al83 also reported finding evidence of altered calcium homeostasis (including decreased CBP levels) in Alzheimer brain tissue.Based on these results, the researchers suggested that vitamin D, through interaction with its receptor, might play a role in regulation of neuronal survival and calcium homeostasis, processes which are disturbed in neurodegenerative diseases such as ALS and Alzheimer disease. Thus, vitamin D could prove a useful pharmacologic treatment for prevention of calcium-mediated neurodegeneration through direct induction of CBPs.As an alternative theory to explain vitamin D's effect on calcium homeostasis and subsequent neurodegeneration, Alexianu et al81 suggested that induction of calbindin D28K by vitamin D might be mediated through NGF. As outlined above, vitamin D increases NGF synthesis, and in turn, NGF can increase calbindin D28K synthesis in neurons.86Vitamin D and HypoparathyroidismFurther supporting a link between vitamin D and neuropathy are reports of neuropathy following idiopathic hypoparathyroidism that is corrected by vitamin D administration. Neuropathy is a rarely reported complication of hypoparathyroidism, with a reported prevalence of 4.2% in one study of 71 patients with hypoparathyroidism.87 Goswami et al88 described a case of a 40-year-old male with idiopathic hypoparathyroidism who presented with tetany, proximal weakness, and diminished reflexes. Upon further examination, the patient was found to have a sensory-motor neuropathy (demonstrated by electrophysiologic studies) with prolonged nerve conduction times. After 2 years of treatment for hypoparathyroidism with calcium and vitamin D, the patient experienced progressive improvement in neuropathy (both clinically and by electrophysiologic studies) and became symptom free. Gay and Grimes89 described a 68-year-old man with hypoparathyroidism who presented with impaired joint position and absent vibration sense. Nerve conduction studies revealed decreased conduction velocity and prolonged latency. After 6 weeks of vitamin D and calcium carbonate therapy, this patient's symptoms improved as well. More recently, Dionisi-Vici et al90 described a 15-month-old child with a distal peripheral sensory motor neuropathy that, again, improved after 5 months of treatment with vitamin D. The clinical success of treatment with vitamin D for neuropathy in the setting of hypoparathyroidism suggests that these results might be extrapolated to other diseases where neuronal function is impaired.Vitamin D and Diabetic Peripheral NeuropathyWhile there is much evidence to suggest that vitamin D may play an important role in the treatment of diabetic neuropathy, only 1 study has investigated this possibility to date. Valensi et al91 designed a randomized, placebo-controlled, double-blind trial of QR-333, a topical compound that contains 3 active ingredients: quercetin, ascorbyl palmitate, and vitamin D3. Quercetin is a flavanoid with aldose reductase inhibitor effects. This class of drugs has been shown to have modest effects on diabetic neuropathy in studies done in Japan.2,92–96 Ascorbyl palmitate is a lipid-soluble derivative of ascorbic acid that is thought to carry ascorbate into neural tissues, where it can scavenge oxygen free radicals and reduce oxidative stress.97,98 Vitamin D, as has been mentioned, appears to have a neuroprotective effect through induction of NGF and up-regulation of CBPs.Patients with diabetic neuropathy were treated for 4 weeks with topical QR-333 and evaluated on the basis of symptom severity (such as numbness, tingling/pricking, jolting or burning pain, weakness, loss of balance). In addition, quality of life was measured by a 14-question instrument at baseline and at various treatment intervals. Interestingly, the topical compound produced significant relief of some of the symptoms of diabetic neuropathy (including numbness and jolting pain), with significant improvements from baseline in quality-of-life measures as well (such as frustration, depression, and embarrassment).91 While the study size was small (34 patients) and the use of compounds in addition to vitamin D prevents any conclusion about the efficacy of topical vitamin D, this very promising study suggests that further investigation of vitamin D therapy for diabetic neuropathy is warranted in a larger population, with the inclusion of nerve function evaluation.Vitamin D and BalanceSeveral researchers have investigated the relationship between vitamin D and neuromuscular function, with conflicting results. Three large meta-analyses have been conducted on the effect of vitamin D3 on the risk of fall and fracture, with the first finding no reduced risk of falling after vitamin D3 supplementation26 and the other 2 studies reporting a decrease in the risk of falls after vitamin D3 supplementation.99,100 However, these studies address vitamin D in the context of potential improvements in muscle strength and decreased body sway, using falls as the primary outcome. In none of these studies was there specific mention of the possible effects of vitamin D on neuronal function.A study by Kenny et al (unpublished data) has since discovered a direct correlation between low vitamin D3 levels and diminished tactile sensation in humans. The researchers recruited 75 women over the age of 65 and measured each subject's serum vitamin D3 levels. Balance ability was measured using the Berg Balance Scale.101 Sensation over the plantar aspect of each foot was assessed by measuring the perception threshold to light touch in 5 separate locations using Semmes-Weinstein monofilaments. The researchers found that vitamin D levels were significantly lower in the women with impaired tactile sensation (able to discern 3 or fewer monofilament touches) as compared with the women who were able to discern most or all of the monofilament touches. Again, this study provides support for a link between low levels of vitamin D and neuropathy.CONCLUSIONThere is a growing body of evidence to suggest that the actions of vitamin D are not limited to calcium and phosphate homeostasis. Receptors for vitamin D exist in the central and peripheral nervous system, allowing for vitamin D metabolism to occur in these sites as well. The hormone has powerful NGF-inducing effects, as well as the ability to induce other neurotrophins and enzymes involved in neurotransmitter synthesis. In addition, low vitamin D levels appear to be related to neuropathy and other neurodegenerative disorders, possibly through an NGF-mediated mechanism. NGF may play an important role in the pathogenesis and prevention of neuropathy, but the size and charge of this molecule prevent it from crossing the blood-brain barrier. However, it may be possible to harness the potential therapeutic effects of NGF through administration of small organic molecules, such as vitamin D, that can enter the nervous system and up-regulate endogenous NGF.31 Given the enormous potential for vitamin D in the pharmacologic treatment of neuropathy and other neurodegenerative diseases, whether via induction of NGF or through another, unknown mechanism, it is essential that more research be done on this “neglected neurosteroid.”ACKNOWLEDGMENTSThis work has been supported by the R01-AG18887, NNG04GK63G, General Clinical Research Center (MO1-RR06192).REFERENCES1. Boron W, Boulpaep E. Medical Physiology. Philadelphia: Saunders; 2003:1095–1097.[Context Link]2. Henry H, Norman H. Vitamin D: metabolism and biological actions. Ann Rev Nutr. 1984;4:493–520.[Context Link][CrossRef][Medline Link]3. Kiraly S, Kiraly M, Hawe R, et al. Vitamin D as a neuroactive substance: review. Sci World J. 2006;6:125–139.[Context Link]4. Garcion E, Wion-Barbot N, Montero-Menei C, et al. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002;13:100–105.[Context Link][CrossRef][Medline Link]5. Gascon-Barre M, Huet P. Apparent 3H1,25 dihydroxyvitamin D3 uptake by canine and rodent brain. Am J Physiol. 1983;E266–E271.[Context Link][CrossRef][Medline Link]6. Stumpf W, Clark S, O'Brien L, et al. 1,25 Dihydroxyvitamin D3 sites of action in spinal cord and sensory ganglion. Anat Embryol. 1988;177:307–310.[Context Link][CrossRef][Medline Link]7. Stumpf W, O'Brien L. 1,25 Dihydroxyvitamin D3 sites of action in the brain. Histochemistry. 1987;87:393–406.[Context Link][CrossRef][Medline Link]8. Stumpf W, Sar M, Clarke S. Brain target sites for 1,25 dihydroxyvitamin D3. Science. 1982;214:1403–1405.[Context Link][CrossRef][Medline Link]9. Stumpf W, Sar M, Reid F, et al. Target cells for 1,25 dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–1190.[Context Link][CrossRef][Medline Link]10. Balabanova S, Richter H, Antoniadis G, et al. 25-Hydroxyvitamin D, 24,25 dihydroxyvitamin D and 1,25 dihydroxyvitamin D in human cerebrospinal fluid. Klin Wochenschr. 1984;62:1086–1090.[Context Link][CrossRef][Medline Link]11. Neveu I, Jehan F, Wion D. Alteration in the levels of 1,25 dihydroxyvitamin D3 and corticosterone found in experimental diabetes reduces nerve growth factor (NGF) gene expression in vitro. Life Sci. 1992;50:1769–1772.[Context Link][Medline Link]12. Neveu I, Naveilhan P, Jehan F, et al. 1,25 Dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Mol Brain Res. 1994;24:70–76.[Context Link][CrossRef][Medline Link]13. Kliewer S, Umesono K, Mangelsdorf D, et al. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature. 1992;355:446–449.[Context Link][CrossRef][Medline Link]14. Baas D, Prufer K, Ittel M, et al. Rat oligodendrocytes express the vitamin D receptor and respond to 1,25 dihydroxyvitamin D3. Glia. 2000;31:59–68.[Context Link][CrossRef][Medline Link]15. Clemens T, Garrett K, Zhou X, et al. Immunocytochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology. 1988;122:1224–1230.[Context Link][CrossRef][Medline Link]16. Lewen G, Mendell L. Nerve growth factor and nociception. Trends Neurosci. 1993;16:353–359.[Context Link][CrossRef][Medline Link]17. Ross T, Moss V, Prahl J, et al. A nuclear protein essential for binding of rat 1,25 dihydroxyvitamin D3 receptor to its response elements. Proc Natl Acad Sci U S A. 1992;89:256–260.[Context Link][CrossRef][Medline Link]18. Segaert S, Bouillon R. Vitamin D and regulation of gene expression. Curr Opin Clin Nutr Metab Care. 1998;1(4):3447–3454.[Context Link][Full Text][CrossRef][Medline Link]19. Johnson J, Grande J, Windebank A, et al. 1,25-Dihydroxyvitamin D3 receptors in developing dorsal root ganglia of fetal rats. Dev Brain Res. 1996;92:120–124.[Context Link][CrossRef][Medline Link]20. Langub M, Herman J, Malluche H, et al. Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience. 2001;104:49–56.[Context Link][CrossRef][Medline Link]21. MacDonald P, Baudino T, Tokumaru H, et al. Vitamin D receptor and nuclear receptor coactivators: crucial interactions in vitamin D-mediated transcription. Steroids. 2001;666:171–176.[Context Link][CrossRef][Medline Link]22. Prufer K, Veenstra T, Jirikowski G, et al. Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat. 1999;16:135–145.[Context Link][CrossRef][Medline Link]23. Jia Z, Nemere I. Immunochemical studies on the putative plasmalemma receptor for 1,25-dihydroxyvitamin D3, II: chick kidney and brain. Steroids. 1999;64:541–550.[Context Link][CrossRef][Medline Link]24. Chesney R. Rickets: an old form for a new century. Pediatr Int. 2003;45:509–511.[Context Link][Full Text][CrossRef][Medline Link]25. Wharton B, Bishop N. Rickets. Lancet. 2003;362:1389–1400.[Context Link][CrossRef][Medline Link]26. Latham N, Anderson C, Reid I. Effects of vitamin D supplementation on strength, physical performance and falls in older persons: a systematic review. Am Geriatr Soc. 2003;51:1219–1226.[Context Link]27. Barde Y. Trophic factors and neuronal survival. Neuron. 1987;2:1525–1534.[Context Link][CrossRef][Medline Link]28. Mobley W, Rutkowski J, Tennekoon G, et al. Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science. 1985;229:284–286.[Context Link][CrossRef][Medline Link]29. Sofroniew M, Howe C, Mobley W. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–1281.[Context Link][CrossRef][Medline Link]30. Thoenen H, Barde Y. Physiology of nerve growth factor. Physiol Rev. 1980;60:1284–1335.[Context Link][CrossRef][Medline Link]31. Carswell S, Hoffman E, Clopton-Hartpence K, et al. Induction of NGF by isoproterenol, 4-methylcatechol, and serum occurs by three distinct mechanisms. Mol Brain Res. 1992;15:145–150.[Context Link][CrossRef][Medline Link]32. Carswell S, Wilcox H, Clopton-Hartpence K, et al. Multiple cellular pathways of induction of NGF by 1,25 dihydroxvitamin D3, TPA, serum, and 4-methylcatechol. Soc Neurosci Abstr. 1992;18:777.[Context Link][Medline Link]33. Musiol I, Feldman D. 1,25 Dihydroxyvitamin D3 induction of nerve growth factor in L929 mouse fibroblasts: effect of vitamin D receptor regulation and potency of vitamin D3 analogs. Endocrinology. 1997;138:12–18.[Context Link][CrossRef][Medline Link]34. Saporito M, Wilcox H, Hartpence K, et al. Pharmacological induction of nerve growth factor in adult rat brain. Exp Neurol. 1993;123:295–302.[Context Link][CrossRef][Medline Link]35. Sonnenberg J, Luine V, Krey L, et al. 1,25 Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology. 1986;118:1433–1439.[Context Link][CrossRef][Medline Link]36. Wion D, MacGrogan D, Neveu I, et al. 1,25 Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res. 1991;28:110–114.[Context Link][CrossRef][Medline Link]37. Jehan F, Neveu I, Barbot N, et al. MC903, an analogue of 1,25 dihydroxyvitamin D3, increases the synthesis of nerve growth factor. Eur J Pharmacol. 1991;208:189–191.[Context Link][Medline Link]38. Binderup L, Bramm E. Effects of a novel vitamin D analogue MC903 on cell proliferation and differentiation in vitro and on calcium metabolism in vivo. Biochem Pharmacol. 1988;37:889.[Context Link][CrossRef][Medline Link]39. Arenas B, Trupp M, Akerud P, et al. GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron. 1995;15:1465–1473.[Context Link][CrossRef][Medline Link]40. Beck K, Valverde J, Alexi T. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature. 1995;373:339–341.[Context Link][Full Text][CrossRef][Medline Link]41. Tomac A, Lindquist E, Lin L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373:335–339.[Context Link][Full Text][CrossRef][Medline Link]42. Henderson C, Phillips H, Pollock R. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 1994;266:1062–1064.[Context Link][Full Text][CrossRef][Medline Link]43. Oppenheim M, Houenou L, Johnson J. Nature. 1995;373:344–346.[Context Link][Full Text][CrossRef][Medline Link]44. Yan Q, Matheson C, Lopex O. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature. 1995;341–344.[Context Link][Full Text][CrossRef][Medline Link]45. Naveilhan P, Neveu I, Wion D, et al. 1,25 Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport. 1996;7:2171–2175.[Context Link][Full Text][CrossRef][Medline Link]46. Hengerer B, Lindholm D, Ruther U, et al. Lesion induced increase in nerve growth factor mRNA is mediated by c-fos. Proc Natl Acad Sci U S A. 1990;87:3899–3903.[Context Link][CrossRef][Medline Link]47. Mocchetti I, DeBernardi M, Szekely A, et al. Regulation of nerve growth factor biosynthesis by beta-adrenergic receptor activation in astrocytoma cells: a potential role of c-fos protein. Proc Natl Acad Sci U S A. 1989;86:3891–3985.[Context Link][CrossRef][Medline Link]48. Morgan J, Curran T. Role of ion flux in the control of c-fos expression. Nature. 1996;322:552–555.[Context Link][CrossRef][Medline Link]49. Naveilhan P, Neveu I, Baudet C, et al. 1,25 Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Mol Brain Res. 1996;41:259–268.[Context Link][CrossRef][Medline Link]50. Garcion E, Nataf S, Berod A, et al. 1,25 Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Mol Brain Res. 1997;45:255–267.[Context Link][CrossRef][Medline Link]51. Garcion E, Sindji L, Montero-Menei C, et al. Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25 dihydroxyvitamin D3. Glia. 1998;22:282–294.[Context Link][CrossRef][Medline Link]52. Garcion E, Sindji L, Leblondel G, et al. 1,25 Dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem. 1999;73:859–866.[Context Link][Full Text][CrossRef][Medline Link]53. Garcion E, Thanh X, Bled F, et al. 1,25 Dihydroxyvitamin D3 regulates gamma-glutamyl transpeptidase activity in rat brain. Neurosci Lett. 1996;216:183–186.[Context Link][CrossRef][Medline Link]54. Pirart J. Why don't we teach and treat diabetic patients better? Diabetes Care. 1978;1:139–140.[Context Link][CrossRef][Medline Link]55. Wright J. Review of the symptomatic treatment of diabetic neuropathy. Pharmacotherapy. 1994;14:689–697.[Context Link][Medline Link]56. DeMott T, Richardson J, Thies S, et al. Falls and gait characteristics among older persons with peripheral neuropathy. Am J Phys Med Rehabil. 2007;86:125–132.[Context Link][Full Text][CrossRef][Medline Link]57. National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2005. Bethesda, MD: US Department of Health and Human Services, National Institutes of Health; 2005.[Context Link]58. Hellweg R, Hartung H. Endogenous levels of nerve growth factor are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res. 1990;26:258–267.[Context Link][CrossRef][Medline Link]59. Hellweg R, Wohrle M, Hartung H, et al. Diabetes mellitus-associated decrease in nerve growth factor levels is reversed by allogenic pancreatic islet transplantation. Neurosci Lett. 1991;125:1–4.[Context Link][CrossRef][Medline Link]60. Anand P, Terenghi G, Warner G, et al. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med. 1996;6:703–707.[Context Link][CrossRef][Medline Link]61. Apfel S, Arezzo J, Brownlee M, et al. Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol. 1991;29:87–90.[Context Link][CrossRef][Medline Link]62. Fukuoka M, Sakurai K, Ohta T, et al. Tacalcitol, an active vitamin D3, induces nerve growth factor production in human epidermal keratinocytes. Skin Pharmacol Appl Skin Physiol. 2001;14:226–233.[Context Link][Medline Link]63. Schneider L, Schedl H, McCain T, et al. Experimental diabetes reduces circulating 1,25 dihydroxyvitamin D in the rat. Science. 1977;196:1452–1454.[Context Link][CrossRef][Medline Link]64. Seino Y, Sierra R, Sonn Y, et al. The duodenal 1,25 dihydroxyvitamin D3 receptor in rats with experimentally induced diabetes. Endocrinology. 1983;113:1721–1725.[Context Link][CrossRef][Medline Link]65. Haddad J, Walgate J. 25-Hydroxyvitamin D transport in human plasma: isolation and partial characterization of calcifidol-binding protein. J Biol Chem. 1976;251:4083.[Context Link]66. Mansford R, Opie L. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet. 1968;1968:670.[Context Link][CrossRef][Medline Link]67. DeNicola A, Fridman O, DelCastillo E, et al. The influence of streptozotocin diabetes on adrenal function in male rats. Horm Metab Res. 1976;8:388.[Context Link][CrossRef][Medline Link]68. Kaplon R, Haussler M, Pak C. The role of 1 alpha, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–760.[Context Link][CrossRef][Medline Link]69. Schneider L, Wasserman R, Schedl H. Depressed duodenal calcium absorption in the diabetic rat: restoration by Solanum malacoxylon. Endocrinology. 1975;97:649–653.[Context Link]70. Haussler M, Wasserman R, McCain T, et al. Life Sci. 1976;18:1049.[Context Link][CrossRef][Medline Link]71. Coratelli P, Petrarulo F, Giannattasio M, et al. Clinical and metabolic effects of long-term treatment with 25 (OH) D3 in hemodialysis. Contrib Nephrol. 1985;49:20–31.[Context Link][Medline Link]72. Jurist J. In vivo determination of the elastic response of bone, II: ulnar resonant frequency in osteoporotic, diabetic, and normal subjects. Phys Med Biol. 1970;15:427–434.[Context Link][CrossRef][Medline Link]73. LaVeccia C, Braga C, Negri E, et al. Intake of selected micronutrients and risk of colorectal cancer. Int J Cancer. 1997;73:523–530.[Context Link][CrossRef]74. Levin M, Boisseau V, Avioli L. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med. 1976;294:241.[Context Link][CrossRef][Medline Link]75. Neumann H, Arnold W. Incidence of diabetes mellitus in 343 cases of trunk osteoporosis. Zentralbl Chir. 1971;96:1395–1401.[Context Link][Medline Link]76. Wu K, Schubeck K, Frost H, et al. Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calcif Tissue Res. 1970;6:204.[Context Link][CrossRef][Medline Link]77. Gnahn H, Hefti F, Heumann R, et al. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiologic role of NGF in the brain? Dev Brain Res. 1983;9:45–52.[Context Link][CrossRef][Medline Link]78. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986;6:2155–2162.[Context Link][CrossRef][Medline Link]79. Fernyhough P, Diemel L, Brewster W, et al. Altered neurotrophin mRNA in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64:1231–1237.[Context Link][CrossRef][Medline Link]80. Riaz S, Malcangio M, Miller M, et al. A vitamin D3 derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozocin-diabetic rats. Diabetologia. 1999;42:1308–1313.[Context Link][CrossRef][Medline Link]81. Alexianu M, Ho B, Mohamed H, et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1994;36:846–858.[Context Link][CrossRef][Medline Link]82. Verity M. Ca++ dependent processes as mediators of neurotoxicity. Neurotoxicology. 1992;13:139–148.[Context Link][Medline Link]83. Sutherland M, Somerville M, Yoong L, et al. Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin 28K mRNA levels. Mol Brain Res. 1992;13:239–250.[Context Link][CrossRef][Medline Link]84. Siklos L, Engelhardt J, Harati Y, et al. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol. 1996;39:203–216.[Context Link][CrossRef][Medline Link]85. Ince P, Stout N, Shaw P, et al. Parvalbumin and calbindin D28K in human motor system and in motor neuron disease. Neuropathol Appl Neurobiol. 1993;19:291–299.[Context Link][CrossRef][Medline Link]86. Iacopino A, Christakos S, Modi P, et al. Nerve growth factor increases calcium binding protein (calbindin D28K) in rat olfactory bulb. Brain Res. 1992;578:305–310.[Context Link][CrossRef][Medline Link]87. Yang S, Wang C, Feng Y. Neurologic and psychiatric manifestations in hypoparathyroidism: clinical analysis of 71 cases. Chin Med J. 1984;97:267–272.[Context Link][Medline Link]88. Goswami R, Bhatia M, Goyal R, et al. Reversible peripheral neuropathy in idiopathic hypoparathyroidism. Acta Neurol Scand. 2002;105:128–131.[Context Link][Full Text][CrossRef][Medline Link]89. Gay J, Grimes J. Idiopathic hypoparathyroidism with impaired vitamin B12 absorption and neuropathy. CMAJ. 1972;107:54–56.[Context Link][Medline Link]90. Dionisi-Vici C, Garavaglia B, Burlina A. Hypoparathyroidism in mitochondrial trifunctional protein deficiency. J Pediatr. 1996;129:159–162.[Context Link][Full Text][CrossRef][Medline Link]91. Valensi P, Devehat C, Richard J, et al. A multicenter, double blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy: a preliminary report. J Diabetes Complications. 2005;19:247–253.[Context Link][CrossRef][Medline Link]92. Goto Y, Hotta N, Shigeta Y, et al. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Biomed Pharmacother. 1995;49:269–277.[Context Link][CrossRef][Medline Link]93. Hotta N, Sakamoto N, Shigeta Y, et al. Diabetic Neuropathy Study Group in Japan. J Diabetes Complications. 1996;10:168–172.[Context Link][Medline Link]94. Ikeda T, Iwata K, Tanaka Y. Long-term effect of epalrestat on cardiac autonomic neuropathy in subjects with non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract. 1999;43:193–198.[Context Link][CrossRef][Medline Link]95. Okemoto H, Nomura M, Nakaya Y. Effects of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy and gastroparesis. Intern Med. 2003;42:655–664.[Context Link][CrossRef][Medline Link]96. Uchida K, Kigoshi T, Nakano S, et al. Effects of 24 weeks of treatment with epalrestat, an aldose reductase inhibitor, on peripheral neuropathy in patients with non-insulin dependent diabetes mellitus. Clin Ther. 1995;17:460–466.[Context Link][CrossRef][Medline Link]97. Kessler M, Ubeaud G, Walter T, et al. Free radical scavenging and skin penetration of troxerutin and vitamin derivatives. J Dermatolog Treat. 2002;13:133–141.[Context Link][CrossRef][Medline Link]98. Pokorski M, Marczak M, Dymecka A, et al. Ascorbyl palmitate as a carrier of ascorbate into neural tissues. J Biomed Sci. 2003;10:193–198.[Context Link][CrossRef][Medline Link]99. Bischoff-Ferrari H, Dawson-Hughes B, Willett W, et al. Effect of vitamin D on falls: a meta-analysis. JAMA. 2004;291:1999–2006.[Context Link][Full Text][CrossRef][Medline Link]100. Jackson C, Gaugris S, Sen S, et al. The effect of cholecalciferol (vitamin D3) on the risk of fall and fracture: a meta-analysis. QJM. 2007;100:185–192.[Context Link][Full Text][CrossRef][Medline Link]101. Kornetti D, Fritz S, Chiu Y, et al. Rating scale analysis of the Berg Balance Scale. Arch Phys Med Rehabil. 2004;85:1128–1135.[Context Link][CrossRef][Medline Link]vitamin D; neuropathy; central nervous system00019616-200711000-0000800042106_2007_100_185_jackson_cholecalciferol_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING))|11065404||ovftdb|SL00042106200710018511065404citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING[Full Text]00042106-200704000-0000100019616-200711000-0000800042106_2007_100_185_jackson_cholecalciferol_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING))|11065213||ovftdb|SL00042106200710018511065213citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING[CrossRef]10.1093%2Fqjmed%2Fhcm00500019616-200711000-0000800042106_2007_100_185_jackson_cholecalciferol_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING))|11065405||ovftdb|SL00042106200710018511065405citation_FROM_JRF_ID_d2155e4096_citationRF_FLOATING[Medline Link]1730832700019616-200711000-0000800000841_2004_85_1128_kornetti_analysis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4134_citationRF_FLOATING))|11065213||ovftdb|SL00000841200485112811065213citation_FROM_JRF_ID_d2155e4134_citationRF_FLOATING[CrossRef]10.1016%2Fj.apmr.2003.11.01900019616-200711000-0000800000841_2004_85_1128_kornetti_analysis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4134_citationRF_FLOATING))|11065405||ovftdb|SL00000841200485112811065405citation_FROM_JRF_ID_d2155e4134_citationRF_FLOATING[Medline Link]1524176300019616-200711000-0000800005501_1984_62_1086_balabanova_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e948_citationRF_FLOATING))|11065213||ovftdb|SL00005501198462108611065213citation_FROM_JRF_ID_d2155e948_citationRF_FLOATING[CrossRef]10.1007%2FBF0171137800019616-200711000-0000800005501_1984_62_1086_balabanova_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e948_citationRF_FLOATING))|11065405||ovftdb|SL00005501198462108611065405citation_FROM_JRF_ID_d2155e948_citationRF_FLOATING[Medline Link]633478000019616-200711000-0000800005557_1992_50_1769_neveu_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e986_citationRF_FLOATING))|11065405||ovftdb|SL00005557199250176911065405citation_FROM_JRF_ID_d2155e986_citationRF_FLOATING[Medline Link]159806500019616-200711000-0000800005740_1994_24_70_neveu_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1021_citationRF_FLOATING))|11065213||ovftdb|SL000057401994247011065213citation_FROM_JRF_ID_d2155e1021_citationRF_FLOATING[CrossRef]10.1016%2F0169-328X%2894%2990119-800019616-200711000-0000800005740_1994_24_70_neveu_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1021_citationRF_FLOATING))|11065405||ovftdb|SL000057401994247011065405citation_FROM_JRF_ID_d2155e1021_citationRF_FLOATING[Medline Link]796837900019616-200711000-0000800006056_1992_355__kliewer_interacts_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1058_citationRF_FLOATING))|11065213||ovftdb|SL00006056199235511065213citation_FROM_JRF_ID_d2155e1058_citationRF_FLOATING[CrossRef]10.1038%2F355446a000019616-200711000-0000800006056_1992_355__kliewer_interacts_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1058_citationRF_FLOATING))|11065405||ovftdb|SL00006056199235511065405citation_FROM_JRF_ID_d2155e1058_citationRF_FLOATING[Medline Link]131035100019616-200711000-0000800004277_2000_31_59_baas_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1095_citationRF_FLOATING))|11065213||ovftdb|SL000042772000315911065213citation_FROM_JRF_ID_d2155e1095_citationRF_FLOATING[CrossRef]10.1002%2F%28SICI%291098-1136%28200007%2931%3A1%3C59%3A%3AAID-GLIA60%3E3.0.CO%3B2-Y00019616-200711000-0000800004277_2000_31_59_baas_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1095_citationRF_FLOATING))|11065405||ovftdb|SL000042772000315911065405citation_FROM_JRF_ID_d2155e1095_citationRF_FLOATING[Medline Link]1081660700019616-200711000-0000800003571_1988_122_1224_clemens_immunocytochemical_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1132_citationRF_FLOATING))|11065213||ovftdb|SL000035711988122122411065213citation_FROM_JRF_ID_d2155e1132_citationRF_FLOATING[CrossRef]10.1210%2Fendo-122-4-122400019616-200711000-0000800003571_1988_122_1224_clemens_immunocytochemical_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1132_citationRF_FLOATING))|11065405||ovftdb|SL000035711988122122411065405citation_FROM_JRF_ID_d2155e1132_citationRF_FLOATING[Medline Link]283102400019616-200711000-0000800007892_1993_16_353_lewen_nociception_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1169_citationRF_FLOATING))|11065213||ovftdb|SL0000789219931635311065213citation_FROM_JRF_ID_d2155e1169_citationRF_FLOATING[CrossRef]10.1016%2F0166-2236%2893%2990092-Z00019616-200711000-0000800007892_1993_16_353_lewen_nociception_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1169_citationRF_FLOATING))|11065405||ovftdb|SL0000789219931635311065405citation_FROM_JRF_ID_d2155e1169_citationRF_FLOATING[Medline Link]769440500019616-200711000-0000800006702_1992_89_256_ross_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1200_citationRF_FLOATING))|11065213||ovftdb|SL0000670219928925611065213citation_FROM_JRF_ID_d2155e1200_citationRF_FLOATING[CrossRef]10.1073%2Fpnas.89.1.25600019616-200711000-0000800006702_1992_89_256_ross_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1200_citationRF_FLOATING))|11065405||ovftdb|SL0000670219928925611065405citation_FROM_JRF_ID_d2155e1200_citationRF_FLOATING[Medline Link]130960900019616-200711000-0000800075197_1998_1_3447_segaert_regulation_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING))|11065404||ovftdb|SL0007519719981344711065404citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING[Full Text]00075197-199807000-0000600019616-200711000-0000800075197_1998_1_3447_segaert_regulation_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING))|11065213||ovftdb|SL0007519719981344711065213citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING[CrossRef]10.1097%2F00075197-199807000-0000600019616-200711000-0000800075197_1998_1_3447_segaert_regulation_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING))|11065405||ovftdb|SL0007519719981344711065405citation_FROM_JRF_ID_d2155e1237_citationRF_FLOATING[Medline Link]1056537200019616-200711000-0000800003026_1996_92_120_johnson_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1270_citationRF_FLOATING))|11065213||ovftdb|SL0000302619969212011065213citation_FROM_JRF_ID_d2155e1270_citationRF_FLOATING[CrossRef]10.1016%2F0165-3806%2895%2900204-900019616-200711000-0000800003026_1996_92_120_johnson_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1270_citationRF_FLOATING))|11065405||ovftdb|SL0000302619969212011065405citation_FROM_JRF_ID_d2155e1270_citationRF_FLOATING[Medline Link]886173100019616-200711000-0000800006129_2001_104_49_langub_hippocampus_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1307_citationRF_FLOATING))|11065213||ovftdb|SL0000612920011044911065213citation_FROM_JRF_ID_d2155e1307_citationRF_FLOATING[CrossRef]10.1016%2FS0306-4522%2801%2900049-500019616-200711000-0000800006129_2001_104_49_langub_hippocampus_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1307_citationRF_FLOATING))|11065405||ovftdb|SL0000612920011044911065405citation_FROM_JRF_ID_d2155e1307_citationRF_FLOATING[Medline Link]1131153000019616-200711000-0000800007653_2001_666_171_macdonald_transcription_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1344_citationRF_FLOATING))|11065213||ovftdb|SL00007653200166617111065213citation_FROM_JRF_ID_d2155e1344_citationRF_FLOATING[CrossRef]10.1016%2FS0039-128X%2800%2900200-200019616-200711000-0000800007653_2001_666_171_macdonald_transcription_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1344_citationRF_FLOATING))|11065405||ovftdb|SL00007653200166617111065405citation_FROM_JRF_ID_d2155e1344_citationRF_FLOATING[Medline Link]1117972400019616-200711000-0000800002000_1999_16_135_prufer_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1381_citationRF_FLOATING))|11065213||ovftdb|SL0000200019991613511065213citation_FROM_JRF_ID_d2155e1381_citationRF_FLOATING[CrossRef]10.1016%2FS0891-0618%2899%2900002-200019616-200711000-0000800002000_1999_16_135_prufer_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1381_citationRF_FLOATING))|11065405||ovftdb|SL0000200019991613511065405citation_FROM_JRF_ID_d2155e1381_citationRF_FLOATING[Medline Link]1022331200019616-200711000-0000800007653_1999_64_541_jia_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1419_citationRF_FLOATING))|11065213||ovftdb|SL0000765319996454111065213citation_FROM_JRF_ID_d2155e1419_citationRF_FLOATING[CrossRef]10.1016%2FS0039-128X%2899%2900030-600019616-200711000-0000800007653_1999_64_541_jia_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1419_citationRF_FLOATING))|11065405||ovftdb|SL0000765319996454111065405citation_FROM_JRF_ID_d2155e1419_citationRF_FLOATING[Medline Link]1049360000019616-200711000-0000800125811_2003_45_509_chesney_rickets_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING))|11065404||ovftdb|SL0012581120034550911065404citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING[Full Text]00125811-200310000-0000100019616-200711000-0000800125811_2003_45_509_chesney_rickets_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING))|11065213||ovftdb|SL0012581120034550911065213citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING[CrossRef]10.1046%2Fj.1442-200X.2003.01783.x00019616-200711000-0000800125811_2003_45_509_chesney_rickets_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING))|11065405||ovftdb|SL0012581120034550911065405citation_FROM_JRF_ID_d2155e1449_citationRF_FLOATING[Medline Link]1452152200019616-200711000-0000800005531_2003_362_1389_wharton_rickets_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1474_citationRF_FLOATING))|11065213||ovftdb|SL000055312003362138911065213citation_FROM_JRF_ID_d2155e1474_citationRF_FLOATING[CrossRef]10.1016%2FS0140-6736%2803%2914636-300019616-200711000-0000800005531_2003_362_1389_wharton_rickets_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1474_citationRF_FLOATING))|11065405||ovftdb|SL000055312003362138911065405citation_FROM_JRF_ID_d2155e1474_citationRF_FLOATING[Medline Link]1458564200019616-200711000-0000800002117_1989_2_1525_barde_neuronal_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1539_citationRF_FLOATING))|11065213||ovftdb|SL0000211719892152511065213citation_FROM_JRF_ID_d2155e1539_citationRF_FLOATING[CrossRef]10.1016%2F0896-6273%2889%2990040-800019616-200711000-0000800002117_1989_2_1525_barde_neuronal_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1539_citationRF_FLOATING))|11065405||ovftdb|SL0000211719892152511065405citation_FROM_JRF_ID_d2155e1539_citationRF_FLOATING[Medline Link]269723700019616-200711000-0000800007529_1985_229_284_mobley_acetyltransferase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1564_citationRF_FLOATING))|11065213||ovftdb|SL00007529198522928411065213citation_FROM_JRF_ID_d2155e1564_citationRF_FLOATING[CrossRef]10.1126%2Fscience.286166000019616-200711000-0000800007529_1985_229_284_mobley_acetyltransferase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1564_citationRF_FLOATING))|11065405||ovftdb|SL00007529198522928411065405citation_FROM_JRF_ID_d2155e1564_citationRF_FLOATING[Medline Link]286166000019616-200711000-0000800000644_2001_24_1217_sofroniew_neuroprotection_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1602_citationRF_FLOATING))|11065213||ovftdb|SL00000644200124121711065213citation_FROM_JRF_ID_d2155e1602_citationRF_FLOATING[CrossRef]10.1146%2Fannurev.neuro.24.1.121700019616-200711000-0000800000644_2001_24_1217_sofroniew_neuroprotection_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1602_citationRF_FLOATING))|11065405||ovftdb|SL00000644200124121711065405citation_FROM_JRF_ID_d2155e1602_citationRF_FLOATING[Medline Link]1152093300019616-200711000-0000800002206_1984_4_493_henry_metabolism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e669_citationRF_FLOATING))|11065213||ovftdb|SL000022061984449311065213citation_FROM_JRF_ID_d2155e669_citationRF_FLOATING[CrossRef]10.1146%2Fannurev.nu.04.070184.00242500019616-200711000-0000800002206_1984_4_493_henry_metabolism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e669_citationRF_FLOATING))|11065405||ovftdb|SL000022061984449311065405citation_FROM_JRF_ID_d2155e669_citationRF_FLOATING[Medline Link]608786100019616-200711000-0000800006521_1980_60_1284_thoenen_physiology_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1637_citationRF_FLOATING))|11065213||ovftdb|SL00006521198060128411065213citation_FROM_JRF_ID_d2155e1637_citationRF_FLOATING[CrossRef]10.1152%2Fphysrev.1980.60.4.128400019616-200711000-0000800006521_1980_60_1284_thoenen_physiology_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1637_citationRF_FLOATING))|11065405||ovftdb|SL00006521198060128411065405citation_FROM_JRF_ID_d2155e1637_citationRF_FLOATING[Medline Link]615965800019616-200711000-0000800005740_1992_15_145_carswell_methylcatechol_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1667_citationRF_FLOATING))|11065213||ovftdb|SL0000574019921514511065213citation_FROM_JRF_ID_d2155e1667_citationRF_FLOATING[CrossRef]10.1016%2F0169-328X%2892%2990162-500019616-200711000-0000800005740_1992_15_145_carswell_methylcatechol_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1667_citationRF_FLOATING))|11065405||ovftdb|SL0000574019921514511065405citation_FROM_JRF_ID_d2155e1667_citationRF_FLOATING[Medline Link]133166000019616-200711000-0000800037898_1992_18_777_carswell_dihydroxvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1704_citationRF_FLOATING))|11065405||ovftdb|SL0003789819921877711065405citation_FROM_JRF_ID_d2155e1704_citationRF_FLOATING[Medline Link]00019616-200711000-0000800003571_1997_138_12_musiol_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1741_citationRF_FLOATING))|11065213||ovftdb|SL0000357119971381211065213citation_FROM_JRF_ID_d2155e1741_citationRF_FLOATING[CrossRef]10.1210%2Fen.138.1.1200019616-200711000-0000800003571_1997_138_12_musiol_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1741_citationRF_FLOATING))|11065405||ovftdb|SL0000357119971381211065405citation_FROM_JRF_ID_d2155e1741_citationRF_FLOATING[Medline Link]2820419300019616-200711000-0000800003702_1993_123_295_saporito_pharmacological_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1771_citationRF_FLOATING))|11065213||ovftdb|SL00003702199312329511065213citation_FROM_JRF_ID_d2155e1771_citationRF_FLOATING[CrossRef]10.1006%2Fexnr.1993.116200019616-200711000-0000800003702_1993_123_295_saporito_pharmacological_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1771_citationRF_FLOATING))|11065405||ovftdb|SL00003702199312329511065405citation_FROM_JRF_ID_d2155e1771_citationRF_FLOATING[Medline Link]840529200019616-200711000-0000800003571_1986_118_1433_sonnenberg_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1809_citationRF_FLOATING))|11065213||ovftdb|SL000035711986118143311065213citation_FROM_JRF_ID_d2155e1809_citationRF_FLOATING[CrossRef]10.1210%2Fendo-118-4-143300019616-200711000-0000800003571_1986_118_1433_sonnenberg_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1809_citationRF_FLOATING))|11065405||ovftdb|SL000035711986118143311065405citation_FROM_JRF_ID_d2155e1809_citationRF_FLOATING[Medline Link]375393200019616-200711000-0000800005370_1991_28_110_wion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1846_citationRF_FLOATING))|11065213||ovftdb|SL0000537019912811011065213citation_FROM_JRF_ID_d2155e1846_citationRF_FLOATING[CrossRef]10.1002%2Fjnr.49028011100019616-200711000-0000800005370_1991_28_110_wion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1846_citationRF_FLOATING))|11065405||ovftdb|SL0000537019912811011065405citation_FROM_JRF_ID_d2155e1846_citationRF_FLOATING[Medline Link]190410100019616-200711000-0000800003656_1991_208_189_jehan_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1883_citationRF_FLOATING))|11065405||ovftdb|SL00003656199120818911065405citation_FROM_JRF_ID_d2155e1883_citationRF_FLOATING[Medline Link]172476100019616-200711000-0000800001009_1988_37_889_binderup_differentiation_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1920_citationRF_FLOATING))|11065213||ovftdb|SL0000100919883788911065213citation_FROM_JRF_ID_d2155e1920_citationRF_FLOATING[CrossRef]10.1016%2F0006-2952%2888%2990177-300019616-200711000-0000800001009_1988_37_889_binderup_differentiation_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1920_citationRF_FLOATING))|11065405||ovftdb|SL0000100919883788911065405citation_FROM_JRF_ID_d2155e1920_citationRF_FLOATING[Medline Link]283088500019616-200711000-0000800002117_1995_15_1465_arenas_noradrenergic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1950_citationRF_FLOATING))|11065213||ovftdb|SL00002117199515146511065213citation_FROM_JRF_ID_d2155e1950_citationRF_FLOATING[CrossRef]10.1016%2F0896-6273%2895%2990024-100019616-200711000-0000800002117_1995_15_1465_arenas_noradrenergic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1950_citationRF_FLOATING))|11065405||ovftdb|SL00002117199515146511065405citation_FROM_JRF_ID_d2155e1950_citationRF_FLOATING[Medline Link]884516900019616-200711000-0000800006056_1995_373_339_beck_mesencephalic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING))|11065404||ovftdb|SL00006056199537333911065404citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING[Full Text]00006056-199501260-0002500019616-200711000-0000800006056_1995_373_339_beck_mesencephalic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING))|11065213||ovftdb|SL00006056199537333911065213citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING[CrossRef]10.1038%2F373339a000019616-200711000-0000800006056_1995_373_339_beck_mesencephalic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING))|11065405||ovftdb|SL00006056199537333911065405citation_FROM_JRF_ID_d2155e1987_citationRF_FLOATING[Medline Link]783076700019616-200711000-0000800006056_1995_373_335_tomac_nigrostriatal_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING))|11065404||ovftdb|SL00006056199537333511065404citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING[Full Text]00006056-199501260-0002400019616-200711000-0000800006056_1995_373_335_tomac_nigrostriatal_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING))|11065213||ovftdb|SL00006056199537333511065213citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING[CrossRef]10.1038%2F373335a000019616-200711000-0000800006056_1995_373_335_tomac_nigrostriatal_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING))|11065405||ovftdb|SL00006056199537333511065405citation_FROM_JRF_ID_d2155e2023_citationRF_FLOATING[Medline Link]783076600019616-200711000-0000800007529_1994_266_1062_henderson_motoneurons_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING))|11065404||ovftdb|SL000075291994266106211065404citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING[Full Text]00007529-199411110-0002400019616-200711000-0000800007529_1994_266_1062_henderson_motoneurons_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING))|11065213||ovftdb|SL000075291994266106211065213citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING[CrossRef]10.1126%2Fscience.797366400019616-200711000-0000800007529_1994_266_1062_henderson_motoneurons_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING))|11065405||ovftdb|SL000075291994266106211065405citation_FROM_JRF_ID_d2155e2058_citationRF_FLOATING[Medline Link]797366400019616-200711000-0000800006056_1995_373_344_oppenheim_developing_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING))|11065404||ovftdb|SL00006056199537334411065404citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING[Full Text]00006056-199501260-0002700019616-200711000-0000800006056_1995_373_344_oppenheim_developing_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING))|11065213||ovftdb|SL00006056199537334411065213citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING[CrossRef]10.1038%2F373344a000019616-200711000-0000800006056_1995_373_344_oppenheim_developing_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING))|11065405||ovftdb|SL00006056199537334411065405citation_FROM_JRF_ID_d2155e2093_citationRF_FLOATING[Medline Link]783076900019616-200711000-0000800006056_1995__341_yan_neurotrophic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING))|11065404||ovftdb|SL00006056199534111065404citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING[Full Text]00006056-199501260-0002600019616-200711000-0000800006056_1995__341_yan_neurotrophic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING))|11065213||ovftdb|SL00006056199534111065213citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING[CrossRef]10.1038%2F373341a000019616-200711000-0000800006056_1995__341_yan_neurotrophic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING))|11065405||ovftdb|SL00006056199534111065405citation_FROM_JRF_ID_d2155e2128_citationRF_FLOATING[Medline Link]783076800019616-200711000-0000800001756_1996_7_2171_naveilhan_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING))|11065404||ovftdb|SL0000175619967217111065404citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING[Full Text]00001756-199609020-0002300019616-200711000-0000800001756_1996_7_2171_naveilhan_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING))|11065213||ovftdb|SL0000175619967217111065213citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING[CrossRef]10.1097%2F00001756-199609020-0002300019616-200711000-0000800001756_1996_7_2171_naveilhan_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING))|11065405||ovftdb|SL0000175619967217111065405citation_FROM_JRF_ID_d2155e2162_citationRF_FLOATING[Medline Link]893098300019616-200711000-0000800006702_1990_87_3899_hengerer_increase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2199_citationRF_FLOATING))|11065213||ovftdb|SL00006702199087389911065213citation_FROM_JRF_ID_d2155e2199_citationRF_FLOATING[CrossRef]10.1073%2Fpnas.87.10.389900019616-200711000-0000800006702_1990_87_3899_hengerer_increase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2199_citationRF_FLOATING))|11065405||ovftdb|SL00006702199087389911065405citation_FROM_JRF_ID_d2155e2199_citationRF_FLOATING[Medline Link]211102000019616-200711000-0000800006702_1989_86_3891_mocchetti_biosynthesis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2243_citationRF_FLOATING))|11065213||ovftdb|SL00006702198986389111065213citation_FROM_JRF_ID_d2155e2243_citationRF_FLOATING[CrossRef]10.1073%2Fpnas.86.10.389100019616-200711000-0000800006702_1989_86_3891_mocchetti_biosynthesis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2243_citationRF_FLOATING))|11065405||ovftdb|SL00006702198986389111065405citation_FROM_JRF_ID_d2155e2243_citationRF_FLOATING[Medline Link]254295300019616-200711000-0000800006056_1996_322_552_morgan_expression_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2286_citationRF_FLOATING))|11065213||ovftdb|SL00006056199632255211065213citation_FROM_JRF_ID_d2155e2286_citationRF_FLOATING[CrossRef]10.1038%2F322552a000019616-200711000-0000800006056_1996_322_552_morgan_expression_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2286_citationRF_FLOATING))|11065405||ovftdb|SL00006056199632255211065405citation_FROM_JRF_ID_d2155e2286_citationRF_FLOATING[Medline Link]242660000019616-200711000-0000800005740_1996_41_259_naveilhan_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2322_citationRF_FLOATING))|11065213||ovftdb|SL0000574019964125911065213citation_FROM_JRF_ID_d2155e2322_citationRF_FLOATING[CrossRef]10.1016%2F0169-328X%2896%2900103-900019616-200711000-0000800005740_1996_41_259_naveilhan_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2322_citationRF_FLOATING))|11065405||ovftdb|SL0000574019964125911065405citation_FROM_JRF_ID_d2155e2322_citationRF_FLOATING[Medline Link]888395900019616-200711000-0000800010837_2002_13_100_garcion_functions_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e736_citationRF_FLOATING))|11065213||ovftdb|SL0001083720021310011065213citation_FROM_JRF_ID_d2155e736_citationRF_FLOATING[CrossRef]10.1016%2FS1043-2760%2801%2900547-100019616-200711000-0000800010837_2002_13_100_garcion_functions_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e736_citationRF_FLOATING))|11065405||ovftdb|SL0001083720021310011065405citation_FROM_JRF_ID_d2155e736_citationRF_FLOATING[Medline Link]1189352200019616-200711000-0000800005740_1997_45_255_garcion_encephalomyelitis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2359_citationRF_FLOATING))|11065213||ovftdb|SL0000574019974525511065213citation_FROM_JRF_ID_d2155e2359_citationRF_FLOATING[CrossRef]10.1016%2FS0169-328X%2896%2900260-400019616-200711000-0000800005740_1997_45_255_garcion_encephalomyelitis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2359_citationRF_FLOATING))|11065405||ovftdb|SL0000574019974525511065405citation_FROM_JRF_ID_d2155e2359_citationRF_FLOATING[Medline Link]914910000019616-200711000-0000800004277_1998_22_282_garcion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2396_citationRF_FLOATING))|11065213||ovftdb|SL0000427719982228211065213citation_FROM_JRF_ID_d2155e2396_citationRF_FLOATING[CrossRef]10.1002%2F%28SICI%291098-1136%28199803%2922%3A3%3C282%3A%3AAID-GLIA7%3E3.0.CO%3B2-700019616-200711000-0000800004277_1998_22_282_garcion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2396_citationRF_FLOATING))|11065405||ovftdb|SL0000427719982228211065405citation_FROM_JRF_ID_d2155e2396_citationRF_FLOATING[Medline Link]948221400019616-200711000-0000800005064_1999_73_859_garcion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING))|11065404||ovftdb|SL0000506419997385911065404citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING[Full Text]00005064-199908000-0004800019616-200711000-0000800005064_1999_73_859_garcion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING))|11065213||ovftdb|SL0000506419997385911065213citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING[CrossRef]10.1046%2Fj.1471-4159.1999.0730859.x00019616-200711000-0000800005064_1999_73_859_garcion_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING))|11065405||ovftdb|SL0000506419997385911065405citation_FROM_JRF_ID_d2155e2433_citationRF_FLOATING[Medline Link]1042808500019616-200711000-0000800005885_1996_216_183_garcion_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2471_citationRF_FLOATING))|11065213||ovftdb|SL00005885199621618311065213citation_FROM_JRF_ID_d2155e2471_citationRF_FLOATING[CrossRef]10.1016%2F0304-3940%2896%2987802-500019616-200711000-0000800005885_1996_216_183_garcion_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2471_citationRF_FLOATING))|11065405||ovftdb|SL00005885199621618311065405citation_FROM_JRF_ID_d2155e2471_citationRF_FLOATING[Medline Link]889748800019616-200711000-0000800003458_1978_1_139_pirart_diabetic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2508_citationRF_FLOATING))|11065213||ovftdb|SL000034581978113911065213citation_FROM_JRF_ID_d2155e2508_citationRF_FLOATING[CrossRef]10.2337%2Fdiacare.1.2.13900019616-200711000-0000800003458_1978_1_139_pirart_diabetic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2508_citationRF_FLOATING))|11065405||ovftdb|SL000034581978113911065405citation_FROM_JRF_ID_d2155e2508_citationRF_FLOATING[Medline Link]72943200019616-200711000-0000800006562_1994_14_689_wright_symptomatic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2533_citationRF_FLOATING))|11065405||ovftdb|SL0000656219941468911065405citation_FROM_JRF_ID_d2155e2533_citationRF_FLOATING[Medline Link]788597200019616-200711000-0000800002060_2007_86_125_mott_characteristics_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING))|11065404||ovftdb|SL0000206020078612511065404citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING[Full Text]00002060-200702000-0000700019616-200711000-0000800002060_2007_86_125_mott_characteristics_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING))|11065213||ovftdb|SL0000206020078612511065213citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING[CrossRef]10.1097%2FPHM.0b013e31802ee1d100019616-200711000-0000800002060_2007_86_125_mott_characteristics_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING))|11065405||ovftdb|SL0000206020078612511065405citation_FROM_JRF_ID_d2155e2558_citationRF_FLOATING[Medline Link]1725169400019616-200711000-0000800005370_1990_26_258_hellweg_experimental_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2615_citationRF_FLOATING))|11065213||ovftdb|SL0000537019902625811065213citation_FROM_JRF_ID_d2155e2615_citationRF_FLOATING[CrossRef]10.1002%2Fjnr.49026021700019616-200711000-0000800005370_1990_26_258_hellweg_experimental_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2615_citationRF_FLOATING))|11065405||ovftdb|SL0000537019902625811065405citation_FROM_JRF_ID_d2155e2615_citationRF_FLOATING[Medline Link]214222400019616-200711000-0000800005885_1991_125_1_hellweg_mellitusassociated_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2646_citationRF_FLOATING))|11065213||ovftdb|SL000058851991125111065213citation_FROM_JRF_ID_d2155e2646_citationRF_FLOATING[CrossRef]10.1016%2F0304-3940%2891%2990114-900019616-200711000-0000800005885_1991_125_1_hellweg_mellitusassociated_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2646_citationRF_FLOATING))|11065405||ovftdb|SL000058851991125111065405citation_FROM_JRF_ID_d2155e2646_citationRF_FLOATING[Medline Link]185755200019616-200711000-0000800000461_1983_244_e266_gascon_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e774_citationRF_FLOATING))|11065213||ovftdb|SL000004611983244e26611065213citation_FROM_JRF_ID_d2155e774_citationRF_FLOATING[CrossRef]10.1152%2Fajpendo.1983.244.3.E26600019616-200711000-0000800000461_1983_244_e266_gascon_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e774_citationRF_FLOATING))|11065405||ovftdb|SL000004611983244e26611065405citation_FROM_JRF_ID_d2155e774_citationRF_FLOATING[Medline Link]668751000019616-200711000-0000800042395_1996_2_703_anand_endogenous_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2683_citationRF_FLOATING))|11065213||ovftdb|SL000423951996270311065213citation_FROM_JRF_ID_d2155e2683_citationRF_FLOATING[CrossRef]10.1038%2Fnm0696-70300019616-200711000-0000800042395_1996_2_703_anand_endogenous_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2683_citationRF_FLOATING))|11065405||ovftdb|SL000423951996270311065405citation_FROM_JRF_ID_d2155e2683_citationRF_FLOATING[Medline Link]864056600019616-200711000-0000800000668_1991_29_87_apfel_neuropathy_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2720_citationRF_FLOATING))|11065213||ovftdb|SL000006681991298711065213citation_FROM_JRF_ID_d2155e2720_citationRF_FLOATING[CrossRef]10.1002%2Fana.41029011500019616-200711000-0000800000668_1991_29_87_apfel_neuropathy_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2720_citationRF_FLOATING))|11065405||ovftdb|SL000006681991298711065405citation_FROM_JRF_ID_d2155e2720_citationRF_FLOATING[Medline Link]170510900019616-200711000-0000800124073_2001_14_226_fukuoka_keratinocytes_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2757_citationRF_FLOATING))|11065405||ovftdb|SL0012407320011422611065405citation_FROM_JRF_ID_d2155e2757_citationRF_FLOATING[Medline Link]1146410500019616-200711000-0000800007529_1977_196_1452_schneider_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2794_citationRF_FLOATING))|11065213||ovftdb|SL000075291977196145211065213citation_FROM_JRF_ID_d2155e2794_citationRF_FLOATING[CrossRef]10.1126%2Fscience.14109800019616-200711000-0000800007529_1977_196_1452_schneider_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2794_citationRF_FLOATING))|11065405||ovftdb|SL000075291977196145211065405citation_FROM_JRF_ID_d2155e2794_citationRF_FLOATING[Medline Link]14109800019616-200711000-0000800003571_1983_113_1721_seino_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2831_citationRF_FLOATING))|11065213||ovftdb|SL000035711983113172111065213citation_FROM_JRF_ID_d2155e2831_citationRF_FLOATING[CrossRef]10.1210%2Fendo-113-5-172100019616-200711000-0000800003571_1983_113_1721_seino_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2831_citationRF_FLOATING))|11065405||ovftdb|SL000035711983113172111065405citation_FROM_JRF_ID_d2155e2831_citationRF_FLOATING[Medline Link]635469500019616-200711000-0000800005531_1968_1968_670_mansford_streptozotocin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2899_citationRF_FLOATING))|11065213||ovftdb|SL000055311968196867011065213citation_FROM_JRF_ID_d2155e2899_citationRF_FLOATING[CrossRef]10.1016%2FS0140-6736%2868%2992103-X00019616-200711000-0000800005531_1968_1968_670_mansford_streptozotocin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2899_citationRF_FLOATING))|11065405||ovftdb|SL000055311968196867011065405citation_FROM_JRF_ID_d2155e2899_citationRF_FLOATING[Medline Link]417065400019616-200711000-0000800004133_1976_8_388_denicola_streptozotocin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2929_citationRF_FLOATING))|11065213||ovftdb|SL000041331976838811065213citation_FROM_JRF_ID_d2155e2929_citationRF_FLOATING[CrossRef]10.1055%2Fs-0028-109362000019616-200711000-0000800004133_1976_8_388_denicola_streptozotocin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2929_citationRF_FLOATING))|11065405||ovftdb|SL000041331976838811065405citation_FROM_JRF_ID_d2155e2929_citationRF_FLOATING[Medline Link]13571800019616-200711000-0000800004686_1977_59_756_kaplon_hyperparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2966_citationRF_FLOATING))|11065213||ovftdb|SL0000468619775975611065213citation_FROM_JRF_ID_d2155e2966_citationRF_FLOATING[CrossRef]10.1172%2FJCI10869600019616-200711000-0000800004686_1977_59_756_kaplon_hyperparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e2966_citationRF_FLOATING))|11065405||ovftdb|SL0000468619775975611065405citation_FROM_JRF_ID_d2155e2966_citationRF_FLOATING[Medline Link]19276300019616-200711000-0000800000533_1988_177_307_stumpf_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e809_citationRF_FLOATING))|11065213||ovftdb|SL00000533198817730711065213citation_FROM_JRF_ID_d2155e809_citationRF_FLOATING[CrossRef]10.1007%2FBF0031583700019616-200711000-0000800000533_1988_177_307_stumpf_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e809_citationRF_FLOATING))|11065405||ovftdb|SL00000533198817730711065405citation_FROM_JRF_ID_d2155e809_citationRF_FLOATING[Medline Link]283313300019616-200711000-0000800005557_1976_18_1049_haussler__|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3036_citationRF_FLOATING))|11065213||ovftdb|SL00005557197618104911065213citation_FROM_JRF_ID_d2155e3036_citationRF_FLOATING[CrossRef]10.1016%2F0024-3205%2876%2990137-500019616-200711000-0000800005557_1976_18_1049_haussler__|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3036_citationRF_FLOATING))|11065405||ovftdb|SL00005557197618104911065405citation_FROM_JRF_ID_d2155e3036_citationRF_FLOATING[Medline Link]93369600019616-200711000-0000800003211_1985_49_20_coratelli_hemodialysis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3073_citationRF_FLOATING))|11065405||ovftdb|SL000032111985492011065405citation_FROM_JRF_ID_d2155e3073_citationRF_FLOATING[Medline Link]383056700019616-200711000-0000800006511_1970_15_427_jurist_determination_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3110_citationRF_FLOATING))|11065213||ovftdb|SL0000651119701542711065213citation_FROM_JRF_ID_d2155e3110_citationRF_FLOATING[CrossRef]10.1088%2F0031-9155%2F15%2F3%2F00300019616-200711000-0000800006511_1970_15_427_jurist_determination_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3110_citationRF_FLOATING))|11065405||ovftdb|SL0000651119701542711065405citation_FROM_JRF_ID_d2155e3110_citationRF_FLOATING[Medline Link]548545300019616-200711000-0000800004335_1997_73_523_laveccia_micronutrients_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3135_citationRF_FLOATING))|11065213||ovftdb|SL0000433519977352311065213citation_FROM_JRF_ID_d2155e3135_citationRF_FLOATING[CrossRef]openurl?genre=article&sid=Ovid:&eissn=1097-0215&date=1997&volume=73&issue=&spage=52300019616-200711000-0000800006024_1976_294_241_levin_diabetes_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3172_citationRF_FLOATING))|11065213||ovftdb|SL00006024197629424111065213citation_FROM_JRF_ID_d2155e3172_citationRF_FLOATING[CrossRef]10.1056%2FNEJM19760129294050200019616-200711000-0000800006024_1976_294_241_levin_diabetes_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3172_citationRF_FLOATING))|11065405||ovftdb|SL00006024197629424111065405citation_FROM_JRF_ID_d2155e3172_citationRF_FLOATING[Medline Link]124454900019616-200711000-0000800008291_1971_96_1395_neumann_osteoporosis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3207_citationRF_FLOATING))|11065405||ovftdb|SL00008291197196139511065405citation_FROM_JRF_ID_d2155e3207_citationRF_FLOATING[Medline Link]514467000019616-200711000-0000800002744_1970_6_204_wu_osteoporosis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3237_citationRF_FLOATING))|11065213||ovftdb|SL000027441970620411065213citation_FROM_JRF_ID_d2155e3237_citationRF_FLOATING[CrossRef]10.1007%2FBF0219620100019616-200711000-0000800002744_1970_6_204_wu_osteoporosis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3237_citationRF_FLOATING))|11065405||ovftdb|SL000027441970620411065405citation_FROM_JRF_ID_d2155e3237_citationRF_FLOATING[Medline Link]553342500019616-200711000-0000800003026_1983_9_45_gnahn_acetyltransferase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3275_citationRF_FLOATING))|11065213||ovftdb|SL00003026198394511065213citation_FROM_JRF_ID_d2155e3275_citationRF_FLOATING[CrossRef]10.1016%2F0165-3806%2883%2990107-400019616-200711000-0000800003026_1983_9_45_gnahn_acetyltransferase_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3275_citationRF_FLOATING))|11065405||ovftdb|SL00003026198394511065405citation_FROM_JRF_ID_d2155e3275_citationRF_FLOATING[Medline Link]00019616-200711000-0000800005095_1986_6_2155_hefti_transections_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3312_citationRF_FLOATING))|11065213||ovftdb|SL0000509519866215511065213citation_FROM_JRF_ID_d2155e3312_citationRF_FLOATING[CrossRef]10.1523%2FJNEUROSCI.06-08-02155.198600019616-200711000-0000800005095_1986_6_2155_hefti_transections_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3312_citationRF_FLOATING))|11065405||ovftdb|SL0000509519866215511065405citation_FROM_JRF_ID_d2155e3312_citationRF_FLOATING[Medline Link]374640500019616-200711000-0000800005064_1995_64_1231_fernyhough_experimentally_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3337_citationRF_FLOATING))|11065213||ovftdb|SL00005064199564123111065213citation_FROM_JRF_ID_d2155e3337_citationRF_FLOATING[CrossRef]10.1046%2Fj.1471-4159.1995.64031231.x00019616-200711000-0000800005064_1995_64_1231_fernyhough_experimentally_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3337_citationRF_FLOATING))|11065405||ovftdb|SL00005064199564123111065405citation_FROM_JRF_ID_d2155e3337_citationRF_FLOATING[Medline Link]786115600019616-200711000-0000800004091_1987_87_393_stumpf_autoradiographic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e846_citationRF_FLOATING))|11065213||ovftdb|SL0000409119878739311065213citation_FROM_JRF_ID_d2155e846_citationRF_FLOATING[CrossRef]10.1007%2FBF0049681000019616-200711000-0000800004091_1987_87_393_stumpf_autoradiographic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e846_citationRF_FLOATING))|11065405||ovftdb|SL0000409119878739311065405citation_FROM_JRF_ID_d2155e846_citationRF_FLOATING[Medline Link]282828300019616-200711000-0000800003441_1999_42_1308_riaz_neurotrophic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3374_citationRF_FLOATING))|11065213||ovftdb|SL00003441199942130811065213citation_FROM_JRF_ID_d2155e3374_citationRF_FLOATING[CrossRef]10.1007%2Fs00125005144300019616-200711000-0000800003441_1999_42_1308_riaz_neurotrophic_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3374_citationRF_FLOATING))|11065405||ovftdb|SL00003441199942130811065405citation_FROM_JRF_ID_d2155e3374_citationRF_FLOATING[Medline Link]1055041400019616-200711000-0000800000668_1994_36_846_alexianu_vulnerability_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3411_citationRF_FLOATING))|11065213||ovftdb|SL0000066819943684611065213citation_FROM_JRF_ID_d2155e3411_citationRF_FLOATING[CrossRef]10.1002%2Fana.41036060800019616-200711000-0000800000668_1994_36_846_alexianu_vulnerability_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3411_citationRF_FLOATING))|11065405||ovftdb|SL0000066819943684611065405citation_FROM_JRF_ID_d2155e3411_citationRF_FLOATING[Medline Link]799877000019616-200711000-0000800006218_1992_13_139_verity_neurotoxicity_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3448_citationRF_FLOATING))|11065405||ovftdb|SL0000621819921313911065405citation_FROM_JRF_ID_d2155e3448_citationRF_FLOATING[Medline Link]150841300019616-200711000-0000800005740_1992_13_239_sutherland_hippocampus_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3480_citationRF_FLOATING))|11065213||ovftdb|SL0000574019921323911065213citation_FROM_JRF_ID_d2155e3480_citationRF_FLOATING[CrossRef]10.1016%2F0169-328X%2892%2990032-700019616-200711000-0000800005740_1992_13_239_sutherland_hippocampus_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3480_citationRF_FLOATING))|11065405||ovftdb|SL0000574019921323911065405citation_FROM_JRF_ID_d2155e3480_citationRF_FLOATING[Medline Link]131749600019616-200711000-0000800000668_1996_39_203_siklos_ultrastructural_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3517_citationRF_FLOATING))|11065213||ovftdb|SL0000066819963920311065213citation_FROM_JRF_ID_d2155e3517_citationRF_FLOATING[CrossRef]10.1002%2Fana.41039021000019616-200711000-0000800000668_1996_39_203_siklos_ultrastructural_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3517_citationRF_FLOATING))|11065405||ovftdb|SL0000066819963920311065405citation_FROM_JRF_ID_d2155e3517_citationRF_FLOATING[Medline Link]896775200019616-200711000-0000800006101_1993_19_291_ince_parvalbumin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3554_citationRF_FLOATING))|11065213||ovftdb|SL0000610119931929111065213citation_FROM_JRF_ID_d2155e3554_citationRF_FLOATING[CrossRef]10.1111%2Fj.1365-2990.1993.tb00443.x00019616-200711000-0000800006101_1993_19_291_ince_parvalbumin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3554_citationRF_FLOATING))|11065405||ovftdb|SL0000610119931929111065405citation_FROM_JRF_ID_d2155e3554_citationRF_FLOATING[Medline Link]823274900019616-200711000-0000800002426_1992_578_305_iacopino_increases_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3591_citationRF_FLOATING))|11065213||ovftdb|SL00002426199257830511065213citation_FROM_JRF_ID_d2155e3591_citationRF_FLOATING[CrossRef]10.1016%2F0006-8993%2892%2990262-800019616-200711000-0000800002426_1992_578_305_iacopino_increases_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3591_citationRF_FLOATING))|11065405||ovftdb|SL00002426199257830511065405citation_FROM_JRF_ID_d2155e3591_citationRF_FLOATING[Medline Link]151128300019616-200711000-0000800002810_1984_97_267_yang_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3628_citationRF_FLOATING))|11065405||ovftdb|SL0000281019849726711065405citation_FROM_JRF_ID_d2155e3628_citationRF_FLOATING[Medline Link]643425800019616-200711000-0000800000132_2002_105_128_goswami_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING))|11065404||ovftdb|SL00000132200210512811065404citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING[Full Text]00000132-200202000-0001000019616-200711000-0000800000132_2002_105_128_goswami_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING))|11065213||ovftdb|SL00000132200210512811065213citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING[CrossRef]10.1034%2Fj.1600-0404.2002.1c031.x00019616-200711000-0000800000132_2002_105_128_goswami_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING))|11065405||ovftdb|SL00000132200210512811065405citation_FROM_JRF_ID_d2155e3663_citationRF_FLOATING[Medline Link]1190312400019616-200711000-0000800002792_1972_107_54_gay_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3701_citationRF_FLOATING))|11065405||ovftdb|SL0000279219721075411065405citation_FROM_JRF_ID_d2155e3701_citationRF_FLOATING[Medline Link]433958900019616-200711000-0000800007529_1982_215_1403_stumpf_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e876_citationRF_FLOATING))|11065213||ovftdb|SL000075291982215140311065213citation_FROM_JRF_ID_d2155e876_citationRF_FLOATING[CrossRef]10.1126%2Fscience.697784600019616-200711000-0000800007529_1982_215_1403_stumpf_dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e876_citationRF_FLOATING))|11065405||ovftdb|SL000075291982215140311065405citation_FROM_JRF_ID_d2155e876_citationRF_FLOATING[Medline Link]697784600019616-200711000-0000800005186_1996_129_159_dionisi_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING))|11065404||ovftdb|SL00005186199612915911065404citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING[Full Text]00005186-199607000-0002600019616-200711000-0000800005186_1996_129_159_dionisi_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING))|11065213||ovftdb|SL00005186199612915911065213citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING[CrossRef]10.1016%2FS0022-3476%2896%2970206-800019616-200711000-0000800005186_1996_129_159_dionisi_hypoparathyroidism_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING))|11065405||ovftdb|SL00005186199612915911065405citation_FROM_JRF_ID_d2155e3731_citationRF_FLOATING[Medline Link]875757900019616-200711000-0000800001828_2005_19_247_valensi_multicenter_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3766_citationRF_FLOATING))|11065213||ovftdb|SL0000182820051924711065213citation_FROM_JRF_ID_d2155e3766_citationRF_FLOATING[CrossRef]10.1016%2Fj.jdiacomp.2005.05.01100019616-200711000-0000800001828_2005_19_247_valensi_multicenter_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3766_citationRF_FLOATING))|11065405||ovftdb|SL0000182820051924711065405citation_FROM_JRF_ID_d2155e3766_citationRF_FLOATING[Medline Link]1611249800019616-200711000-0000800001712_1995_49_269_goto_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3803_citationRF_FLOATING))|11065213||ovftdb|SL0000171219954926911065213citation_FROM_JRF_ID_d2155e3803_citationRF_FLOATING[CrossRef]10.1016%2F0753-3322%2896%2982642-400019616-200711000-0000800001712_1995_49_269_goto_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3803_citationRF_FLOATING))|11065405||ovftdb|SL0000171219954926911065405citation_FROM_JRF_ID_d2155e3803_citationRF_FLOATING[Medline Link]757900700019616-200711000-0000800001828_1996_10_168_hotta_neuropathy_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3840_citationRF_FLOATING))|11065405||ovftdb|SL0000182819961016811065405citation_FROM_JRF_ID_d2155e3840_citationRF_FLOATING[Medline Link]880746700019616-200711000-0000800003218_1999_43_193_ikeda_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3877_citationRF_FLOATING))|11065213||ovftdb|SL0000321819994319311065213citation_FROM_JRF_ID_d2155e3877_citationRF_FLOATING[CrossRef]10.1016%2FS0168-8227%2899%2900015-700019616-200711000-0000800003218_1999_43_193_ikeda_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3877_citationRF_FLOATING))|11065405||ovftdb|SL0000321819994319311065405citation_FROM_JRF_ID_d2155e3877_citationRF_FLOATING[Medline Link]1036942900019616-200711000-0000800002494_2003_42_655_okemoto_gastroparesis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3913_citationRF_FLOATING))|11065213||ovftdb|SL0000249420034265511065213citation_FROM_JRF_ID_d2155e3913_citationRF_FLOATING[CrossRef]10.2169%2Finternalmedicine.42.65500019616-200711000-0000800002494_2003_42_655_okemoto_gastroparesis_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3913_citationRF_FLOATING))|11065405||ovftdb|SL0000249420034265511065405citation_FROM_JRF_ID_d2155e3913_citationRF_FLOATING[Medline Link]1292448700019616-200711000-0000800002858_1995_17_460_uchida_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3948_citationRF_FLOATING))|11065213||ovftdb|SL0000285819951746011065213citation_FROM_JRF_ID_d2155e3948_citationRF_FLOATING[CrossRef]10.1016%2F0149-2918%2895%2980111-100019616-200711000-0000800002858_1995_17_460_uchida_epalrestat_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3948_citationRF_FLOATING))|11065405||ovftdb|SL0000285819951746011065405citation_FROM_JRF_ID_d2155e3948_citationRF_FLOATING[Medline Link]758585000019616-200711000-0000800013308_2002_13_133_kessler_penetration_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3985_citationRF_FLOATING))|11065213||ovftdb|SL0001330820021313311065213citation_FROM_JRF_ID_d2155e3985_citationRF_FLOATING[CrossRef]10.1080%2F0954663026019950500019616-200711000-0000800013308_2002_13_133_kessler_penetration_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e3985_citationRF_FLOATING))|11065405||ovftdb|SL0001330820021313311065405citation_FROM_JRF_ID_d2155e3985_citationRF_FLOATING[Medline Link]1222787700019616-200711000-0000800019465_2003_1_193_pokorski_palmitate_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4022_citationRF_FLOATING))|11065213||ovftdb|SL000194652003119311065213citation_FROM_JRF_ID_d2155e4022_citationRF_FLOATING[CrossRef]10.1007%2FBF0225605400019616-200711000-0000800019465_2003_1_193_pokorski_palmitate_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4022_citationRF_FLOATING))|11065405||ovftdb|SL000194652003119311065405citation_FROM_JRF_ID_d2155e4022_citationRF_FLOATING[Medline Link]1259575500019616-200711000-0000800005407_2004_291_1999_bischoff_vitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING))|11065404||ovftdb|SL000054072004291199911065404citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING[Full Text]00005407-200404280-0003600019616-200711000-0000800005407_2004_291_1999_bischoff_vitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING))|11065213||ovftdb|SL000054072004291199911065213citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING[CrossRef]10.1001%2Fjama.291.16.199900019616-200711000-0000800005407_2004_291_1999_bischoff_vitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING))|11065405||ovftdb|SL000054072004291199911065405citation_FROM_JRF_ID_d2155e4059_citationRF_FLOATING[Medline Link]1511381900019616-200711000-0000800007529_1979_206_1188_stumpf_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e911_citationRF_FLOATING))|11065213||ovftdb|SL000075291979206118811065213citation_FROM_JRF_ID_d2155e911_citationRF_FLOATING[CrossRef]10.1126%2Fscience.50500400019616-200711000-0000800007529_1979_206_1188_stumpf_25dihydroxyvitamin_|00019616-200711000-00008#xpointer(id(citation_FROM_JRF_ID_d2155e911_citationRF_FLOATING))|11065405||ovftdb|SL000075291979206118811065405citation_FROM_JRF_ID_d2155e911_citationRF_FLOATING[Medline Link]505004Is Vitamin D Insufficiency Associated With Peripheral Neuropathy?Carlson Amanda N. MD; Kenny, Anne M. MDCME Review Article #30CME Review Article #30617p 319-325