美敦力颈椎非融合产品

PRESTIGE™ LP
颈椎间盘系统

极佳的影像学特性

- 通过合金金属的高密度，使周围组织更清晰地显示，有利于术后的影像学追踪。

模拟人体生理性颈椎活动

- 模拟了人体颈椎生理性的生物力学特性，保护了椎间盘和小关节。

简便安全的手术操作技巧

- 采用精确的影像技术，减少手术时间，减少患者的痛苦，方便医生使用，多种规格的植入物能够满足各种患者的需求。

BRYAN™
颈椎间盘系统

特点

- 无需融合
- 融合与正常的颈椎间盘功能相似的活动能力
- 上下椎间盘高度维持不变，对于长期的头颈部前屈
- 稳定性和活动性的兼顾
- 工具实现无间隙植入，确保长期稳定
- 融合椎间盘与之良好的生物相容性

材质

- 钛合金材料，具有良好的生物相容性，耐腐蚀和良好的弹性，采用高密度的耐腐蚀合金
- 外壳为钛合金
International Journal for the Study of the Spine

Editor-in-Chief
James N. Weinstein
Lebanon, New Hampshire

Managing Editor
Loretta M. Pickett
Lebanon, New Hampshire

Deputy Editors
Gunnar B. J. Andersson
Chicago, Illinois
Scott D. Boden
Atlanta, Georgia
Keith H. Bridwell
St. Louis, Missouri
Marcia Ciol
Seattle, Washington
Richard A. Deyo
Seattle, Washington
Curtis Dickman
Phoenix, Arizona
Jiri Dvorak
Zurich, Switzerland
Michael G. Fehlings
Toronto, Canada
Robert D. Fraser
Adelaide, South Australia
Steven R. Garfin
San Diego, California
James D. Kang
Pittsburgh, Pennsylvania
Jeffrey N. Katz
Boston, Massachusetts
Shinichi Kikuchi
Fukushima, Japan
Jeffrey C. Lotz
San Francisco, California
William S. Marras
Columbus, Ohio
Paul C. McCormick
New York, New York
Bjorn L. Rydevik
Goteborg, Sweden
Kevin F. Spratt
Hanover, New Hampshire
Alexander R. Vaccaro
Philadelphia, Pennsylvania
Yan Wang
Beijing, China

Associate Editorial Board
William Abdu
Hanover, New Hampshire
Jean-Jacques Abitbol
San Diego, California
Kunyoshi Abumi
Sapporo, Japan
Michael A. Adams
Bristol, England
Max Aebl
Bern, Switzerland
Todd Albert
Philadelphia, Pennsylvania
Howard S. An
Chicago, Illinois
Paul A. Anderson
Madison, Wisconsin
Steven J. Atlas
Boston, Massachusetts
Michele C. Battle
Edmonton, Canada
Gordon R. Bell
Cleveland, Ohio
Tom Bendix
Ring, Denmark
Edward C. Benzel
Cleveland, Ohio
Sigurd Berven
San Francisco, California
Ralph Bloch
Bern, Switzerland
Nikola Bogduk
New Castle, Australia
Henry H. Bolham
Cleveland, Ohio
Michael J. Bolesta
Dallas, Texas
Norbert Boos
Zurich, Switzerland
Stefano Boriani
Bologna, Italy
David S. Bradford
San Francisco, California
Mark D. Brown
Miami, Florida
A. Kim Burton
West Yorkshire, England
Timothy S. Carey
Chapel Hill, North Carolina
John M. Cavanaugh
Detroit, Michigan
Cheng-Kung Cheng
Taipei, Taiwan, R.O.C.
Daniel C. Cherkin
Seattle, Washington
Michael F. Coscia
Indianapolis, Indiana
Joyce DeLeo
Hanover, New Hampshire
Richard Derby
Daly City, California
Robert A. Dickson
West Yorkshire, England
Jean Dubousset
Paris, France
Thomas B. Ducker
Annapolis, Maryland
Nabil Ebraheim
Toledo, Ohio
Frank J. Eismont
Miami, Florida
Nancy E. Epstein
New Hyde Park, New York
Stephen I. Essexes
Houston, Texas
Jeremy C. T. Fairbank
Oxford, England
Robert Ferrari
Edmonton, Canada
Yizhar Floman
Tel-Aviv, Israel
Bruce E. Fredrickson
Syracuse, New York
Gary E. Friedlaender
New Haven, Connecticut
Robert J. Gatchel
Dallas, Texas
Harry K. Gennat
San Francisco, California
Stanley D. Gertzbein
Houston, Texas
Vijay K. Goel
Iowa City, Iowa
Charles G. Greenough
Cleveland, England
Dieter Grob
Zurich, Switzerland
Richard D. Guyer
Chapel Hill, North Carolina
Nortin M. Hadler
Chapel Hill, North Carolina
Sasvish S. Haghghi
San Diego, California
Scott Haldeman
Santa Ana, California
Hamilton Hall
Ontario, Canada
John G. Heller
Decatur, Georgia
Robert N. Hensinger
Ann Arbor, Michigan
Harry N. Herkowitz
Royal Oak, Michigan
John Anthony Herring
Dallas, Texas
Richard J. Herzog
New York, New York
Alan S. Hilibrand
Philadelphia, Pennsylvania
William C. Hutton
Decatur, Georgia
Roger P. Jackson
North Kansas City, Missouri
Jeffrey G. Jarvik
Seattle, Washington
Niel Kahanovitz
Philadelphia, Pennsylvania
Jay A. Kaiser
Greeriba, California

(continued)
Mamoru Kawakami
Wakayama City, Japan

Bart W. Koes
Rotterdam, Netherlands

Panagiotis G. Korovessis
Patras, Greece

John P. Kostuik
Baltimore, Maryland

Shrawan Kumar
Alberta, Canada

Oliver Kwan
Edmonton, Canada

Jerald E. Lancourt
Dallas, Texas

Joseph M. Lane
New York, New York

Noshir A. Langrana
Piscataway, New Jersey

Casey K. Lee
Roseland, New Jersey

Lawrence G. Lenke
St. Louis, Missouri

Isador Lieberman
Cleveland, Ohio

Don M. Long
Baltimore, Maryland

John E. Lonstein
Minneapolis, Minnesota

Susan Lord
NSW, Australia

John P. Lubicky
Indianapolis, Indiana

Masafumi Machida
Tokyo, Japan

Anne F. Mannion
Zurich, Switzerland

Thomas-Marc Markwalder
Muri-Bern, Switzerland

Youssef Masharawi
Tel Aviv, Israel

Tom G. Mayer
Dallas, Texas

Paul C. McAfee
Towsom, Maryland

Stuart M. McGill
Ontario, Canada

Robert F. McLain
Cleveland, Ohio

Arnold H. Menezes
Iowa City, Iowa

Myung-Sang Moon
Taejon, Korea

Robert C. Mulholland
Nottingham, England

Kenneth J. Noonan
Madison, Wisconsin

James W. Ogilvie
Salt Lake City, Utah

Kjell S. Olmarker
Goteborg, Sweden

Jeffrey H. Owen
Cockeysville, Maryland

João Luiz Pinheiro-Franco
São Paulo, Brazil

Franco Postacchini
Rome, Italy

Richard Raynor
New York, New York

Daniel K. Resnick
Madison, Wisconsin

Michael D. Ryan
Sydney, Australia

Michael F. Schafer
Chicago, Illinois

Frank J. Schwab
New York, New York

William O. Shaffer
Lexington, Kentucky

Paul Shekelle
Santa Monica, California

Jianxiong Shen
Beijing, China

Harry L. Shuffelbarger
Miami, Florida

Volker K.H. Sonntag
Phoenix, Arizona

Ian A. Stokes
Burlington, Vermont

Susan M. Swank
Whittier, California

Eugene J.M.A. Thonar
Chicago, Illinois

Tor D. Tosteson
Hanover, New Hampshire

Vincent C. Traynelis
Iowa City, Iowa

Clifford B. Tribus
Madison, Wisconsin

Judith Turner
Seattle, Washington

Jill P. Urban
Oxford, England

Johan W. Van Goethem
Edgegem, Belgium

Maurits M. van Tulder
Amsterdam, Holland

Tapio Viderman
Edmonton, Canada

Stuart L. Weinstein
Iowa City, Iowa

William C. Welch
Philadelphia, Pennsylvania

F. Todd Wetzel
Wilmington, Delaware

Sam W. Wiesel
Washington, D.C.

Beth A. Winkelstein
Philadelphia, Pennsylvania

Ralf H. Wittenberg
Bochum, Germany

Kirkham B. Wood
Boston, Massachusetts

Thomas A. Zdeblick
Madison, Wisconsin

Recognized as the official journal of:

1. Argentine Society for the Study of Spine Pathology
2. Asia Pacific Orthopaedic Association - Spinal Section
3. Brazilian Spine Society
4. Cervical Spine Research Society
5. Chinese Orthopaedic Association
6. Finnish Spine Research Society
10. Scoliosis Research Society
11. Spine Society of the Hellenic Orthopaedic Association
12. Spine Society of Australia
13. Spine Society of Europe (Affiliate)
14. Turkish Spine Society

Spine (ISSN 0362–2436) is published twice a month by Lippincott Williams & Wilkins at 16522 Hunters Green Parkway, Hagerstown, MD 21740-2116. Business and production offices are located at 530 Walnut Street, Philadelphia, PA 19106-3621. Periodicals postage paid at Hagerstown, MD, and at additional mailing offices. Copyright © 2009 by Lippincott Williams & Wilkins.

Annual Subscription Rates: United States - $654.00 Individual, $1,881.00 Institution, $308.00 In-training. Rest of World - $964.00 Individual, $2,493.00 Institution, $357.00 In-training. Single copy rate $95.00. All prices include a handling charge. Subscriptions outside of North America must add $45.00 for airfreight delivery. United States residents of AL, CO, DC, FL, GA, HI, IA, ID, IN, KS, KY, LA, MD, MO, ND, NM, NV, PR, RI, SC, SD, UT, VT, WA, WV add state sales tax. The GST tax of 7% must be added to all orders shipped to Canada (Lippincott Williams & Wilkins’ GST Identification #895524239, Publications Mail Agreement #0864994). Subscription prices outside the United States must be prepaid. Prices subject to change without notice. Visit us online at www.lww.com.

Individual and in-training subscription rates include print and access to the online version. Institutional rates are for print only; online subscriptions are available via Ovid. Institutions can choose to purchase a print and online subscription together for a discounted rate. Institutions that wish to purchase a print subscription, please contact Lippincott Williams & Wilkins, 16522 Hunters Green Parkway, Hagerstown, MD 21740-2116; phone 800-638-3030 (outside the United States 301-223-2300); fax 301-223-2400. Institutions that wish to purchase an online subscription or online with print, please contact the Ovid Regional Sales Office near you or visit www.ovid.com/site/index.jsp and select Contact and Locations.

Address for non-member subscription information, orders, or change of address: Lippincott Williams & Wilkins, P.O. Box 1580, Hagerstown, MD 21741-1580; phone 800-638-3030 (outside the United States 301-223-2300); fax 301-223-2400. In Japan, contact LWW Igaku-Shoin Ltd., 3-23-14 Hongo, Bunkyo-ku, Tokyo 113-0033; phone 81-3-5689-5400, fax 81-3-5689-5402. In Bangladesh, India, Nepal, Sri Lanka, and Pakistan, contact Globe Publications Pvt. 8-13 3rd Floor, A Block, Shopping Complex, Naraina Vihar, Ring Road, New Delhi, 110028; phone 91-11-579-3211; fax 91-11-579-8876.
主题文章
胸椎椎弓根螺钉
置钉点与置钉方向的比较研究
Spine 2008;33:2675–2681
朱晓东

颈椎
跨越颈胸段颈椎前、后路联合减压融合手术的围手术期并发症
Spine 2008;33:2887–2891
雷伟

一个选择颈椎后纵韧带骨化手术路径的新概念
Spine 2008;33:E990–E993
钟永盛 杜世新

腰椎
腰椎间盘突出症的手术与非手术疗法比较
脊柱患者预后研究试验（SPORT）随访4年的结果
Spine 2008; 33:2789–2800
张国荧 张永刚

畸形
青少年特发性脊柱侧凸的术后胸椎后凸矫形效果
三种术式多中心比较
Spine 2008;33:2630–2636
程自申 毛克亚

青少年脊柱侧弯在选择性胸椎或腰椎融合术后代偿性弧度自发性去旋转的对照研究
Spine 2008;33:2643–2647
胸椎椎弓根螺钉
置钉点与置钉方向的比较研究

Aman Dhawan, MD,* William R. Klemme, MD,* and David W. Polly, Jr, MD†

研究设计：采用尸体作为研究对象，利用CT扫描和计算机辅助的图像导航系统对不同置钉方法的置钉点与置钉方向进行比较研究。

目的：比较目前临床上所使用的几种胸椎椎弓根螺钉置钉方法和置钉方向，寻找安全边界最佳的严格的椎弓根内螺钉置钉方法。

背景资料：胸椎椎弓根螺钉可以用于各类脊柱伤病中，包括骨折、肿瘤、畸形等。寻找胸椎椎弓根螺钉最佳置钉点的研究日益受到重视，但目前尚没有探讨最佳胸椎椎弓根置钉方向的研究。

方法：对3具男性尸体标本（年龄65~70岁）进行薄层CT扫描，采用计算机辅助的图像导航系统虚拟置入966次椎弓根螺钉。对3种不同的置钉方法的置钉点和置钉方向进行有效椎弓根直径（Effective Pedicle Diameter, EPD）和最大置钉弧（Maximum Insertional Arc, MIA）的评估：（1）直线朝前法，（2）直线内前法，（3）解剖结构法。测算有效椎弓根直径的方法是：采用上述3种置钉方法分别置入不破坏椎弓根和（或）椎体的皮质骨的最大直径虚拟椎弓根螺钉，此螺钉的直径即为该置钉方法针对某一个椎体的有效椎弓根直径。最大置钉弧的测算方法是：对于一个确定的置钉方法的置钉点虚拟置入0.1 mm的虚拟螺钉，原则是不破坏椎弓根皮质并且置入至少50%的椎体位置，其最上方和最下方微小直径虚拟螺钉的夹角是评估的角度，即为最大置钉弧。

结果：直线朝前法方向在矢状面的平均EPD为7.6 ± 0.3（SEM）mm，而解剖结构法方向为9.1 ± 0.3（SEM）mm——比直线朝前法增加20%（P < 0.0005）。在横切面上直线朝前法方向和解剖结构法方向的平均EPD分别为4.1 ± 0.2（SEM）mm和5.0 ± 0.2（SEM）mm，后者比前者也增加22%（P < 0.0005）。上胸椎（T1-T4）、中胸椎（T5-T8）和下胸椎（T9~T12）不同置钉方向（无论矢状面或横切面）的EPD均有显著的统计学差异。直线朝前法置钉点在矢状面的平均MIA为18.7 ± 1.1˚（SEM），直线内前法置钉点平均为25.8 ± 0.8˚（SEM），而解剖结构法的置钉点平均为30.2 ± 0.8˚（SEM）。解剖结构法置钉点的矢状面MIA比直线朝前法高38%（P < 0.0005），比直线内前法高17%（P < 0.0005）。在横切面上，直线朝前法和解剖结构法置钉点的平均MIA均为17.8 ± 0.6˚（SEM），而直线内前法为18.6 ± 0.6˚（SEM），并无统计学差异（P=0.086）。在上胸椎、中胸椎和下胸椎，不同置钉点的MIA在矢状面上有统计学差异，而在横切面上无统计学差异。

结论：有效椎弓根直径（EPD）和最大置钉弧（MIA）分别取决于置钉方向和置钉点。在横切面，解剖结构法方向的EPD大于直线朝前法方向。在矢状面，解剖结构法方向的EPD大于直线内前法方向。采用解剖结构法置钉点在矢状面可获得更大的MIA。本研究数据提示，当遇到胸椎椎弓根较小或需要置入较粗大的椎弓根螺钉时，采用解剖结构法方向置钉并且采用解剖结构法方向，可获得较大骨性通道。

关键词：椎弓根螺钉；胸椎；置钉方向；置钉点；图像导航手术。Spine 2008;33:2675–2681
术中的应用越来越普遍[17-21]。

胸椎椎弓根螺钉在应用中的解剖方面的制约和所发生的并发症受到学者们的关注[22]。Vaccaro等证实颈椎椎弓根螺钉的过程中重要的血管和神经结构损伤的风险[23,24]。Ugur等发现，从颈椎硬膜囊到椎弓根内侧皮质的平均距离为0.0 mm~1.4 mm不等[25]，颈椎椎神根到椎弓根下方皮质的距离自0.8至6.0 mm不等[25]。与腰椎相比，颈椎椎弓根的尺寸明显较小，且随着节段的不同形态变化也较多[21,25]。颈椎椎弓根的横向直径范围是4.5~7.8 mm，而矢状面上椎弓根上下宽度的变化较大——从7.0 mm至20.0 mm不等[23,26]。因此，颈椎椎弓根的解剖在不同节段是复杂多变的[27-30]。

文献报道了多种不同的胸椎椎弓根螺钉置钉点[6,24,31,32]。Roy-Camille提出的置钉点为小关节突中线和横突中线交叉点。Ebraheim等采用尸体标本研究了椎弓根轴的投影[33]，清晰地画出了T1-T12椎弓根轴在后方骨性结构上的投影，结果发现，在T1和T2节段，椎弓根轴投影点位于上关节突外侧缘的内侧7~8 mm，横突前方3~4 mm；在T3-T12节段，椎弓根轴投影点位于上关节突外侧缘的内侧4~5 mm，横突前方5~8 mm。Magerl建议在下胸椎采用关节突外侧缘与横突外缘的交界点作为置钉点[34]。

学者们描述了多种胸椎椎弓根螺钉置入的轨迹。Roy-Camille等主张螺钉的方向应垂直于关节突的后表

文献中很少关注不同胸椎椎弓根螺钉置入方法的比较[25]。本研究比较了3种胸椎椎弓根螺钉置钉方法和置钉方向，以评估哪种方法可以获得最大的骨性置钉通道和最大置钉弧。

材料和方法

本研究对3具男性胸椎尸体标本（年龄分别为65岁、65岁和70岁）进行CT扫描。平均CT扫描层厚为1.08 mm（范围1.0~1.25 mm）。CT扫描证实3具尸体均无骨折、代谢性骨病或畸形等影响形态学研究的情况。所有CT扫描数据采用MACH4软件录入Stealth工作站（Medtronic Surgical Navigation Technologies, Louisville, CO），该软件可进行重建和虚拟椎弓根螺钉置入。在3例研究标本的三维CT图像上共置入966次虚拟胸椎椎弓根螺钉（3标本数×12胸椎节段数×双侧×3种不同的置钉方向）。这项技术在精确分析脊柱的解剖结构的同时，还可以在同一个胸椎椎弓根反复置入不同规格的虚拟螺钉来反复测量胸椎椎弓根螺钉的不同置钉点和置钉方向。一旦某一个胸椎椎弓根被虚拟螺钉所固定，相关的数据则即刻显示在屏幕上，在记录好之后随即删除。然后进行下一个新置钉点或置钉方向的测量，如此反复。这种方法可以对从不同标准本得来的CT扫描结果进行椎弓根螺钉置入过程的重

![CT扫描片上的胸椎椎弓根螺钉的置钉方向](image)
复测量。

有效椎弓根直径（Effective Pedicle Diameter, EPD）是矢状面或横切面的椎弓根最大直径，此直径可以使胸椎椎弓根螺钉充分置入，以不穿透皮质骨为限。EPD的测量是在工作站中通过虚拟螺钉得出的。针对每个节段本研究对以下三种不同置钉方向进行了比较，包括：（1）解剖结构法，（2）直线内前法和（3）直线朝前法。矢状面和冠状面的螺钉置入是一致的。因此，针对某一椎弓根来说，只有1个EPD进行不同置钉方向的比较。适于螺钉置入的椎弓根总面积按照所测得的矢状面EPD和横切面EPD的乘积计算。

解剖结构法：置钉方向走行于椎弓根的轴正中（图1）。形态学研究数据表明，越靠近头侧，胸椎椎弓根与横切面之间的夹角越大。一般而言，T12椎弓根偏离2°左右，到T4则收敛至平均17°[39]。在矢状面，胸椎椎弓根向尾侧有平均22°的倾斜，其范围为17.5°~27.3°——中胸椎倾斜度最大[33,40]。根据解剖学标志，矢状面轨迹的前方目标是椎体前下角皮质交界处，这个方向一般垂直于上关节突的后表面。

直线内前法：置钉方向在横切面上按照椎弓根的轴线走行，但在矢状面上平行于椎体的上终板[35]。在矢状面上这一轨迹的方向通常垂直于椎板。直线朝前法：置钉方向由Roy-Camille最先描述，其方向是在矢状面上平行于上终板，在横切面上平行于中轴线。

最大置钉弧（Maximum Insertional Arc, MIA）的定义是：对于一个确定的置钉点，最上方和最下方可置入螺钉（使用0.1 mm虚拟螺钉）连线的夹角，要求该虚拟螺钉不破坏椎弓根皮质且置入至少50%的椎体（图2）。选择固定50%椎体的根据是Zindrick等的研究数据，即螺钉置入椎体50%和穿透皮质的双皮质螺钉在抗拔出强度之间没有任何差异[11]。本研究采用的螺钉置入点包括解剖结构法[17]、直线内前法[35]和直线朝前法（Roy-Camille）[36,37]的置钉点位置。图3显示胸椎所有节段3种不同置钉点的情况，由于解剖结构法和直线朝前法的置钉点在横切面上是相同的，因而在这个平面上只有1个比较（解剖结构法与直线内前法）。

结果显示

有效椎弓根直径（EPD）和椎弓根截面积

有效椎弓根直径（EPD）和椎弓根截面积代表椎弓根螺钉的走行空间大小，与不同的置钉方向相关（图4）。对于所有胸椎节段来说，在矢状面上解剖结构法的EPD比直线内前法大1.5±0.5（SEM）mm，并且有统计学差异（P<0.0005）。而在横切面上解剖结构法比直线朝前法的EPD大0.9±0.1（SEM）mm，亦存在明显差异（P<0.0005）。采用解剖结构法方向在矢状面和横切面上可分别获得20%和22%的更大的EPD。所有胸椎节
无论矢状面或横切面，不同置钉方向在不同胸椎节段的EPD和容纳螺钉通过的椎弓根截面积均存在统计学显著差异。在上胸椎(T1-T4)，矢状面上解剖结构法置钉点比直线内前法置钉点的EPD大4.4°±0.9°(SEM)，比直线朝前法置钉点的EPD大7.1°±0.8°(SEM)。在横切面上观测到直线内前法置钉点的EPD比直线朝前法置钉点大0.9°±0.5°(SEM)。在中胸椎(T5-T8)，矢状面上解剖结构法置钉点比直线内前法置钉点大9.9°±1.7°(SEM)。在横切面上，直线朝前法置钉点的EPD比解剖结构法置钉点大2.0°±1.0°(SEM)。所有胸椎节段MIA数据见表2。在矢状面上，与直线内前法置钉点和直线朝前法置钉点相比，采用解剖结构法置钉点分别增加了17%和38%的MIA角度。在中胸椎(T5-T8)，矢状面上解剖结构法置钉点的MIA数据见表1。

表1 所有胸椎(T1-T12)不同置钉方向所产生的椎弓根直径

<table>
<thead>
<tr>
<th></th>
<th>矢状面“a”</th>
<th>横切面“a”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>直线朝前法</td>
<td>解剖结构法</td>
</tr>
<tr>
<td>平均值</td>
<td>7.6</td>
<td>9.1</td>
</tr>
<tr>
<td>中位值</td>
<td>7.0</td>
<td>9.3</td>
</tr>
<tr>
<td>均数标准误</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*均值间差异具有统计学意义—矢状面P<0.0005,横切面P<0.0005。

在矢状面CT扫描片上所看到的解剖结构法方向（白色）和直线内前法/直线朝前法方向（灰色）的有效椎弓根直径

(P<0.0005)。胸椎EPD情况见图5。
比直线朝前法置钉点大15.6°±1.1°(SEM) (P<0.0005)，比直线内前法置钉点大5.8°±1.1°(SEM) (P<0.0005)。在横切面上，直线内前法置钉点MIA比直线朝前法置钉点/解剖结构法置钉点大0.4°±0.5°(SEM) (P=0.426)。

在下胸椎(T9-T12)，矢状面上解剖结构法置钉点的MIA比直线朝前法置钉点大9.0°±2.0°(SEM) (P<0.0005)，但比直线内前法置钉点小0.3°±1.2°(SEM) (P=0.861)。在横切面上，直线内前法置钉点MIA比直线朝前法置钉点/解剖结构法置钉点大0.4°±1.0°(SEM) (P=0.963)。

讨论

与其他脊柱内固定方法相比，胸椎椎弓根螺钉固定力量更强[14]，应用于脊柱侧凸与后凸畸形时可获得更大的矫正度[12,13]。迄今为止，临床上关注的重点是使用胸椎椎弓根螺钉的安全性，多个文献报道了有关详细讨论胸椎椎弓根螺钉应用的有效性与安全性研究[41-45]。目前出现了多种不同的胸椎弓根置入技术，每种技术相对于置钉方向和置钉点的量化优势尚待确定。

本研究结果表明，胸椎椎弓根螺钉的置钉方向对可容纳螺钉置入的椎弓根骨性通道的大小有明显的影响。在胸椎所有节段的矢状面和横切面上，解剖结构法(矢

- **表2 胸椎所有节段(T1-T12)不同置钉点产生的最大置钉弧**

<table>
<thead>
<tr>
<th></th>
<th>矢状面</th>
<th>横切面</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Roy-Camille法</td>
<td>直线朝前法</td>
</tr>
<tr>
<td>平均值</td>
<td>18.7°</td>
<td>25.8°</td>
</tr>
<tr>
<td>中位值</td>
<td>17.0°</td>
<td>25.0°</td>
</tr>
<tr>
<td>均数标准误</td>
<td>1.1°</td>
<td>0.8°</td>
</tr>
</tbody>
</table>

*均值间差异具有统计学意义-矢状面RC vs. 解剖结构法P<0.0005，RC vs. 直线朝前法P<0.0005，直线朝前法 vs. 解剖结构法 P<0.0005，
†无统计学显著性-横切面 RC vs. 直线朝前法P=0.086。
状面上向尾侧呈22°倾斜）总是可以提供较大的（20%）骨性通道。

据我们所知，最大置钉弧这一概念在以往的脊柱相关文献中并未受到关注。我们认为，正如外科医生临床所经历的一样，MIA反映了临床术中准确置入螺钉的椎弓根可耐受性。当采用导航技术置入胸椎椎弓根螺钉时，胸椎椎弓根中间狭窄部的范围受到置钉点的制约。我们的临床实践和尸体标本研究表明，一般而言，胸椎椎弓根中间峡部位于上关节突背侧皮质表面前方15 mm左右。因此，在椎弓根螺钉置入过程中，螺钉最先通过椎弓根中间峡部。MIA是椎弓根中间峡部容纳螺钉置入的能力表现，反映了外科医生认为可以接受的螺钉位置的程度。同样，在胸椎所有节段，解剖结构法方向的MIA明显大于其他螺钉置入轨迹，并且有统计学意义。

成功置入胸椎椎弓根螺钉是一个受多方面因素影响的过程。由于胸椎的解剖学限制，各种文献报道了不同的椎弓根螺钉置钉点和置钉方向，我们的研究旨在对这些方法进行综合评价。目前学者们已经进行了不同置钉方向的生物力学研究，当然这也应当作为选择何种置钉方向的决定因素之一。本研究表明，在胸椎的任何节段，采用解剖结构法置钉点和置钉方向可以获得最长的有效椎弓根直径和最大的置钉弧。

图6 在胸椎所有节段，矢状面（A）和横切面（B）上不同置钉点产生的最大置钉弧。

要点

- 对于所有的胸椎节段而言，在矢状面，解剖结构法产生了比直线前法长20%的有效椎弓根直径；可获得额外1.5±0.5 (SEM) mm的优势（解剖结构法> 直线前法，P<0.0005）。
- 对于所有的胸椎节段而言，在横切面，解剖结构法产生了比直线前法长20%的有效椎弓根直径；可获得额外0.9±0.1 (SEM) mm的优势（解剖结构法> 直线前法，P<0.0005）。
- 对于所有的胸椎节段而言，在矢状面，解剖结构法置钉点比直线前法和直线前法置钉点的最大置钉弧显著增大，分别增加4.4°±0.9° (SEM)（解剖结构法置钉点> 直线前法置钉点，P<0.0005）和7.1°±0.8° (SEM)（解剖结构法置钉点> 直线前法置钉点，P<0.0005）。

致谢

衷心感谢Robin Howard, MS和Brad D. Runyon, FSS在本研究过程中提供了设备方面的帮助。
參考文献

40. Polly DW, Melkent AJ. Optimal trajectory for thoracic pedicle screws. Paper presented at: Scoliosis Research Society 36th Annual Meeting; September 20, 2001; Cleveland, OH.

(第二军医大学附属长海医院 朱晓东)
Perioperative Complications of Combined Anterior and Posterior Cervical Decompression and Fusion Crossing the Cervico-Thoracic Junction

Robert A. Hart, MD, Robert L. Tatsumi, MD, Jayme R. Hiratzka, MD, and Jung U. Yoo, MD

研究设计

回顾性综述。

研究目的：明确一期行颈椎前后路联合多节段（范围超过颈胸段）融合手术的围手术期并发症。

研究背景：颈椎管狭窄合并颈椎后凸畸形病变累及3个或3个以上节段时，通常采用前后路联合减压、脊柱融合内固定手术，当长节段颈椎融合范围达到C7时，一些外科医生会延长后路融合的节段，超越颈胸段，以减少相邻节段发生退变的可能。而与此类手术相关的围手术期并发症目前尚无报道。

研究方法：对于行跨越颈胸段的颈椎前后路联合手术的患者所发生的围术期并发症进行回顾性分析。采用Fisher精确检验对手术时间、失血量及由于延长插管时间的补液量进行分析。

研究结果：13例患者符合入选标准。9例患者（69%，9/13例）在围术期出现了至少1种以上的并发症，包括16种次要并发症和5种主要并发症。最常见的并发症是吞咽困难（46%、6/13例）以及需要延长插管时间的气道水肿（38%、5/13例）。

结论：虽然该类手术的术后并发症比较常见，但大部分并发症比较轻微，经治疗后无持续性影响。需要延长插管或再次插管的气道水肿比较常见。根据现有数据，我们无法阐明需要延长插管与其他因素包括手术时间、失血量及补液量之间的关系。

关键词：颈胸段；颈椎管狭窄；颈椎后凸畸形；并发症；脊柱融合。Spine 2008;33:2887–2891

材料与方法

通过机构审核委员会的批准，我们对2000~2004年中接受了跨越颈胸段前后路联合手术的患者资料进行回顾性研究，所有患者均被诊断为退行性颈椎管狭窄合并后凸畸形，病变累及脊髓和（或）神经根，包括既往存
围手术期并发症

Hart et al 9

在颈椎手术史的患者。骨折、肿瘤、感染及先天性脊柱异常的患者不在研究范围内。所有手术均由通讯作者完成，且所有患者随访时间至少2年。

前路手术过程根据临床的具体情况，对单个或更多椎体节段行椎间盘切除术和(或)椎体次全切除术。前路椎体间的重建采用新鲜冷冻的异体骨(腓骨或髂骨)或填充自体骨颗粒的钛网。所有患者均采用颈椎前路锁定钢板。

后路内固定器结构包括与3.0 mm棒相连接的3.5 mm颈椎侧块螺钉以及直径3.5 mm的胸椎椎弓根螺钉或3.0 mm颈椎椎弓根螺钉相连，融合末端至T1-T3。

总体失血量、术中静脉补液量、代血浆容量、拔管的时间、术前吸烟状况以及有无颈椎手术史均由病历记录提供。手术总时间以切开第一手术切口至关闭第二手术切口来计算，包括患者重新摆放体位的时间及后路手术的整个过程。对术中及术后3个月内出现的围手术期并发症进行统计。在2年的随访时间内观察邻近节段退变、骨不连及内置物移位的发生率。

根据是否出现术后气道损伤，受试患者被分为两组，术后48小时内成功拔管的患者与在相同时间内未拔管或拔管失败的患者进行对照研究。统计学对照研究采用Fisher精确检验，对两组数据关于手术总时间、后路手术时间、术中失血量、术中血浆及液体置换量术前吸烟状况以及既往颈椎手术史等进行分析。统计结果表明所有对照数据均无明显的统计学意义(β=0.2)。

结果

总共13例患者符合本实验的入选标准，包括7例女性患者，6例男性患者，平均年龄为56岁(39~74岁)。其中9例患者被诊断为多节段颈椎型颈椎病，3例患者为多节段颈椎管狭窄合并脊髓型颈椎病，1例患者为脊髓型颈椎病。6例患者既往有颈椎手术史，其中前路手术4例，后路手术1例，前、后路手术1例(表1)。

其中9例患者(69%；9/13例)发生了21项并发症。次要并发症包括暂时性吞咽困难(46%；6/13例)，需要延长插管时间或重复插管的气道水肿(7%；1/13例)、肺炎(7%；1/13例)，后路手术硬脊膜撕裂(7%；1/13例)，后路手术切口皮肤浅层裂开(7%；1/13例)，以及Halo支架移位(7%；1/13例)。5例患者出现了严重并发症(38%；5/13例)，其中包括需要进行声带稳定性治疗的喉返神经麻痹(7%；1/13例)，需要行经皮胃临时造口术治疗的食管运动功能障碍(15%；2/13例)，取髂骨处伤口感染(7%；1/13例)，以及术后

表1 患者数据

<table>
<thead>
<tr>
<th>患者</th>
<th>年龄</th>
<th>性别</th>
<th>仰卧位手术时间（分钟）</th>
<th>俯卧位手术时间（分钟）</th>
<th>总时间（小时）</th>
<th>出血量（毫升）</th>
<th>输血量（毫升）</th>
<th>术中补液量（毫升）</th>
<th>翻修术</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>男</td>
<td>225</td>
<td>165</td>
<td>6.5</td>
<td>1 200</td>
<td>0</td>
<td>5 200</td>
<td>是</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>女</td>
<td>330</td>
<td>165</td>
<td>8.25</td>
<td>700</td>
<td>600</td>
<td>6 600</td>
<td>是</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>男</td>
<td>180</td>
<td>250</td>
<td>7.2</td>
<td>600</td>
<td>0</td>
<td>5 000</td>
<td>是</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>男</td>
<td>210</td>
<td>260</td>
<td>7.8</td>
<td>2 000</td>
<td>600</td>
<td>7 000</td>
<td>是</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>女</td>
<td>200</td>
<td>240</td>
<td>7.3</td>
<td>1 000</td>
<td>0</td>
<td>7 000</td>
<td>是</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>男</td>
<td>150</td>
<td>240</td>
<td>6.5</td>
<td>1 000</td>
<td>0</td>
<td>6 700</td>
<td>是</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>女</td>
<td>180</td>
<td>240</td>
<td>7</td>
<td>1 100</td>
<td>700</td>
<td>6 600</td>
<td>是</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>女</td>
<td>180</td>
<td>210</td>
<td>6.5</td>
<td>1 700</td>
<td>1 050</td>
<td>8 500</td>
<td>是</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>男</td>
<td>165</td>
<td>210</td>
<td>6.25</td>
<td>600</td>
<td>350</td>
<td>7 500</td>
<td>是</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>女</td>
<td>270</td>
<td>330</td>
<td>10</td>
<td>1 100</td>
<td>250</td>
<td>9 500</td>
<td>是</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
<td>女</td>
<td>105</td>
<td>240</td>
<td>5.75</td>
<td>500</td>
<td>0</td>
<td>4 300</td>
<td>是</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>女</td>
<td>180</td>
<td>240</td>
<td>5</td>
<td>600</td>
<td>0</td>
<td>4 700</td>
<td>是</td>
</tr>
<tr>
<td>13</td>
<td>43</td>
<td>男</td>
<td>210</td>
<td>255</td>
<td>7.75</td>
<td>1 000</td>
<td>300</td>
<td>5 800</td>
<td>是</td>
</tr>
</tbody>
</table>

表2 主要并发症

- 椎间盘造影剂：15% (2/13)
- 声带麻痹：7% (1/13)
- 取髂骨处伤口感染：7% (1/13)
- 术后心肌梗死：7% (1/13)
- 内置物移位：0%
- 骨不连：0%

表3 次要并发症

- 吞咽困难：46% (6/13)
- 重复插管：38% (5/13)
- 术后谵妄：7% (1/13)
- 肺炎：7% (1/13)
- Halo支架移位：7% (1/13)
- 硬脊膜撕裂：7% (1/13)
- 手术切口裂开：7% (1/13)
心肌梗死与复苏（7%；1/13例）（表2和表3）。

置管时间大于48小时与不需延长插管时间的患者相比，手术时间、术中失血量、术中补液量、术前吸烟状况及有无脊柱手术史等无统计学差异（图1）。这些比较的把握度及P值见表4。

术中没有患者出现神经功能恶化或植入物的移位。术后2年行颈椎动态X线及CT检查，无患者出现植入物移位、骨不连或邻近节段病变（图2）。

讨论

对患有退行性多节段颈椎管狭窄合并后凸畸形的患者，其外科治疗目前仍是一个挑战性的临床难题。跨越颈胸段的前路椎间盘切除术或椎体次全切除术联合后路内固定融合术在降低植入物移位、骨不连及相邻神经节段病变等并发症的发生方面是有效的[1,11,17-20]。我们的研究结果显示，在为期至少2年的随访期间，手术疗效仍然良好。但是，研究结果也显示采用该手术方式存在较高
围手术期并发症

虽然如此，大多数的并发症症状较轻且容易治疗，无明显的后遗症。需要延长插管时间或重新插管的气道水肿是本组患者中最常见的并发症。既往报道认为，引起气道并发症的危险因素包括颈椎型颈椎病、前路多节段手术、术前吸烟史、既往肺部疾病史、手术时间超过 10 小时以及术中输液量超过 6200 毫升。完成前路手术后变位行后路手术，可能会增加术后气道水肿的发生率。在本研究中，气道阻塞导致再次插管的发生率为 38%，但没有发现这与其他危险因素之间的相关性。可能的原因是研究组中的手术时间、失血量及补液量的范围相对较窄（表 1）。另一个因素是样本量较小，这导致了在对照

表 4 统计学分析

<table>
<thead>
<tr>
<th>拔管</th>
<th>延长插管</th>
<th>再次插管</th>
<th>P值</th>
<th>可检出差异</th>
</tr>
</thead>
<tbody>
<tr>
<td>病例 (n)</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总手术时间（小时）</td>
<td>7.1</td>
<td>6.95</td>
<td>0.8515</td>
<td>3.24</td>
</tr>
<tr>
<td>仰卧位手术时间（小时）</td>
<td>3.5</td>
<td>2.9</td>
<td>0.3549</td>
<td>1.75</td>
</tr>
<tr>
<td>术中失血量（毫升）</td>
<td>1163</td>
<td>760</td>
<td>0.1149</td>
<td>780</td>
</tr>
<tr>
<td>术中输液量（毫升）</td>
<td>369</td>
<td>360</td>
<td>0.3628</td>
<td>610</td>
</tr>
<tr>
<td>术中静脉液体量（毫升）</td>
<td>6575</td>
<td>6360</td>
<td>0.8140</td>
<td>2650</td>
</tr>
<tr>
<td>吸烟状况</td>
<td>3</td>
<td>0</td>
<td>0.2308</td>
<td></td>
</tr>
<tr>
<td>前路翻修手术</td>
<td>3</td>
<td>2</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

的围手术期并发症发生率。虽然如此，大多数的并发症症状较轻且容易治疗，无明显的后遗症。

需要延长插管时间或重新插管的气道水肿是本组患者中最常见的并发症。既往报道认为，引起气道并发症的危险因素包括颈椎型颈椎病、前路多节段手术、术前吸烟史、既往肺部疾病史、手术时间超过 10 小时以及术中输液量超过 6200 毫升。完成前路手术后变位行后路手术，可能会增加术后气道水肿的发生率。在本研究中，气道阻塞导致再次插管的发生率为 38%，但没有发现这与其他危险因素之间的相关性。可能的原因是研究组中的手术时间、失血量及补液量的范围相对较窄（表 1）。另一个因素是样本量较小，这导致了在对照

图 2 A-C，T10 以下完全性瘫痪患者的颈椎侧位片，患者主诉为神经根性疼痛症状及上肢功能障碍。D、C2 至 C7 减压并后路内固定融合的术前侧位片。E, F, 术后 1 年 3 个月复查颈椎侧位 X 线片及矢状位 CT 扫描。在 C7 至 T1 椎间隙出现严重的退行性变同时存在脊柱前移。患者再次出现颈椎神经根症状累及双侧 T1 神经根。G, H, 前后位及侧位片显示 C7 至 T1 前路椎间盘切除联合后路 C3 至 T3 的长节段融合获得了牢固的固定，患者术后未发生并发症，并取得极好的临床治疗效果。
研究中统计分析的把握度相对下降。此外，本项回顾性研究也存在样本选择和样本观察的偏差。最后，虽然手术指征具有致性，但是手术过程并没有统一标准。

尽管存在以上不足，本研究证实这一手术术后经常会发生围手术期并发症。由于气道损伤的时常发生，使术后常规机械通气变得更合理。并且对再次插管的患者进行24~48小时的重症监护是十分必要的。对术前此类极具挑战性的患者时，尽管存在发生并发症的风险，这种手术方法仍然能够有效避免骨不连、内置物移位及早期邻近节段退变的发生。

参考文献

A New Concept for Making Decisions Regarding the Surgical Approach for Cervical Ossification of the Posterior Longitudinal Ligament
The K-Line

TaKayuki Fujiyoshi, MD,* Masashi Yamazaki, MD, PhD,* Junko Kawabe, MD,* Tomonori Endo, MD,* TaKeo Furuya, MD,* Masao Koda, MD, PhD,* Akihiko OKawa, MD, PhD,* Kazuhisa Takahashi, MD, PhD,* and Hiroaki Konishi, MD, PhD†

钟永盛 杜世新 译

研究设计：介绍K线作为选择颈椎后纵韧带骨化（OPLL）手术入路的新概念。

目的：分析以K线为参数的颈椎后纵韧带骨化分类与手术疗效的相互关系。

背景资料：既往的研究结果表明，颈椎的后凸畸形和较大的骨化范围是导致颈椎后纵韧带骨化患者行椎板成形术后疗效不佳的主要原因。然而，以往没有报道过通过一个参数来评估上述两个因素的研究。

方法：K线是连接C2到C7椎管中点的连线。27例行后路减压的颈椎后纵韧带骨化患者根据K线分为两组。骨化未超过K线为阳性组，超过K线为阴性组。通过术中超声检查，评估后路减压后脊髓后移的程度。使用日本骨科协会（JOA）评分系统评估术前以及术后1年的评分并获得治愈率。

结果：8例患者为K线阴性，19例为K线阳性。在阴性组中治愈率为13.9%，在阳性组为66.0%（P<0.01）。超声显示在阴性组中脊髓后移不足。

结论：结果显示在阴性组中后路减压手术不能获得充足的脊髓后移和神经症状的改善。K线作为新的标准，在选择颈椎后纵韧带骨化手术入路时是一种简单且具有实用性的参数。

关键词：K线；手术路径；后纵韧带骨化；脊髓型颈椎病；椎板成形术。Spine 2008;33:E990-E993

以往报道，影响颈椎后纵韧带骨化（OPLL）患者行椎板成形术疗效的因素主要有两个：①颈椎后凸畸形的程度[1]；②较大的骨化范围[2,3]。以前都是把这两个因素分开单独进行研究，没有通过一个参数来评估上述两个因素的报道。在我们的研究中提出了一个全新概念，即“K线”，“K”表示“后凸畸形”，将颈椎后凸的程度和骨化的范围统一为一个参数。根据“K线”，我们将行后路减压术后的OPLL患者逐一分类，评估术后疗效和分类之间的关系。另外我们应用术中超声测量后路椎板减压术后脊髓的移位程度，评估脊髓移位与K线分类之间的联系。

材料和方法

患者资料

从1990年5月到2005年12月，共收治OPLL导致的脊髓型颈椎病患者27例，其中23例男性和4例女性，平均年龄63.3岁（46~81岁）。手术方法包括19例患者行椎板成形术，8例患者行后路椎板减压加融合术。椎板成形术的手术范围从C3到C7（Itoh's法）[4,5]。从2003年4月开始，我们对颈椎OPLL患者在减压节段存在较大的骨化块及明显的节段不稳定者，在行椎板切除术或椎板成形术同时联合侧块螺钉和钉棒进行重建[5]。所有患者随访不少于1年。
临床和影像学评估

日本骨科学会（JOA）评分系统被用于评估脊髓型颈椎病的严重程度[5]。评估术前及术后1年患者的JOA评分并，推算其恢复情况[5]。

术前在X线侧位片上测量颈椎前凸角（C2-C7角）[5]，在CT片上测量后纵韧带骨化（OPLL）在狭窄椎管中的占据比例，OPLL占据比例=后纵韧带的厚度/骨性椎管的前后径×100%[5]。

K线的定义

在颈部立位X线侧位片上画出K线，由于C7被患者的肩部遮挡，所以我们应用MRI T2加权像中的正中矢状像测定。首先标出C2和C7椎管的中点，然后连成一线（图1）。我们根据K线把后纵韧带骨化患者分成两组：K线阳性组和K线阴性组（图1）。在K线阳性组中，骨化程度未超过K线，仍在K线的腹侧；骨化与K线之间有一定空间，所以命名为“阳性”（图2A）；在K线阴性组中，骨化程度超过K线（图2B、C），这时骨化范围很大，划分为“K线阴性”（图2B），有时骨化范围很小，但伴随颈椎后凸畸形，使骨化范围也超过了K线，也划分为“K线阴性”（图2C）。

术中脊柱超声

我们应用术中超声动态模式观察脊髓移动，测量脊髓从骨化带向后位移情况。后路椎板减压后我们根据直接观察到的骨骺端蛛网膜下腔是否存在，把患者分为3类：无接触型、接触分开型和接触型[6]。在无接触型中，脊髓并没有与后纵韧带骨化接触，在脊髓与骨化带之间蛛网膜下腔依稀可见；在接触分开型中，脊髓因搏动，时与骨化带接触，时与骨化带分开；而在接触型中，脊髓与骨化带接触，蛛网膜下腔消失。

统计学分析

应用Mann-Whitney U检验，Scheffe’s F检验和Fisher精确概率检验，结果以均数±标准差表示，设定P<0.05有统计学意义。

■ 结果

有27例后纵韧带骨化患者，其中19例为K线阳性，而8例为K线阴性，术前及术后的临床资料见表1。K线阳性组的平均治愈率是66.1%，K线阴性组仅仅是13.9%，所以K线阳性组患者术前神经症状的改善远远好于K线阴性组（P<0.01）。

根据术中超声观察结果，5例患者为接触型，12例为接触分开型，10例为无接触型。接触型的平均治愈率是10.5%，接触分开型的平均治愈率是54.2%，无接触型的
颈椎后纵韧带骨化手术路径

Fujiyoshi et al 15

平均治愈率是66.5%，所以接触型患者术后神经症状的改善差于接触分开型和无接触型（P < 0.05）。

在K线阳性组的19例患者中，9例为接触分开型，10例为无接触型；而在K线阴性组的8例患者中，5例为接触型，3例为接触分开型（表1）。因此在K线阳性组中接触型的发生率明显高于阳性组（P < 0.01），相反K线阴性组无接触型的发生率明显高于阴性组（P < 0.05）。

讨论

Batzdorf等[7]对脊柱型颈椎病的颈椎弯曲程度进行了研究，并且对颈椎弯曲程度与椎板切除术后患者的临床疗效的关系进行了分析。结合他们的研究成果，我们主张K线作为后纵韧带骨化的手术入路标准，通过K线，能够把颈椎后凸及后纵韧带骨化范围统一为一个参数。另外依据K线对患者进行分类，是一种简单而实用的方法。

我们在术中应用超声研究行后路手术的后纵韧带骨化患者，评估减压术前患者的脊髓后移情况。Mihara等[8]应用术中椎板超声研究行椎板成形术的脊柱型颈椎病患者，在颈椎后凸椎板切除术中发现，术中超声发现的接触型患者术后临床效果差于接触分开型和无接触型。

致谢

作者感谢Chiba大学医学研究院骨科的Ryo Kadota, Chikato Mannoji, Tomohiro Miyashita和Koichi Hayashi博士以及Nagasaki Rosai医院骨科的Kenshiro Inatomi, Atushi Tagami和Katuhiro Aida博士在本研究中提供的友好支持和帮助。

参考文献

（汕头大学第一附属医院 钟永盛 杜世新）
Surgical Versus Nonoperative Treatment for Lumbar Disc Herniation
Four-Year Results for the Spine Patient Outcomes Research Trial (SPORT)

James N. Weinstein, DO, MS,* Jon D. Lurie, MD, MS,* Tor D. Tosteson, ScD,* Anna N. A. Tosteson, ScD,* Emily A. Blood, MS,* William A. Abdu, MD,* Harry Herkowitz, MD,† Alan Hilibrand, MD,‡ Todd Albert, MD,‡ and Jeffrey Fischgrund, MD†

张国荧 张永刚译

腰椎间盘突出症的手术与非手术疗法比较
脊柱患者预后研究试验（SPORT）随访4年的结果

腰椎间盘手术仍是最常见的手术之一，不同地区的手术率呈现出很大差异[1]。最近有两项随机试验显示，手术疗法可以更快地使腰椎间盘突出症患者减轻疼痛和恢复健康[2-4]。治疗1年后，手术与非手术疗法的疗效相近。然而，两项试验都包含了大量手术患者，他们原本属于非手术组，治疗方法的改变影响了意向治疗分析的结果。本文通过继续随访腰椎间盘突出症患者的随机观察队列，报告SPORT研究随访4年的结果。
Research Trial, SPORT)是在美国11个州的13个医学中心进行的研究，这些医学中心对脊柱疾病患者给予了多学科的综合治疗。每个参与机构都有受试者委员会来核准其标准化的研究设计，其中包括观察研究和随机队列研究。病例入选和排除的标准、研究干预的方法、结果测定和随访程序都需事先呈报[3-5]。

病例资料

男性和女性病例中，具有腰神经根受累的症状和明确体征并至少持续6周，影像学上存在患侧相应节段椎间盘突出，并且认为需要手术治疗的患者符合入选标准，非手术疗法的入选标准在试验设计中并未明确[3-5]。已有其他文献报道了明确的入选和排除标准[4,5]。

每个研究机构都有一名护士负责筛选病例并按照入选标准加以确认。入选病例被分到随机试验组或者观察队列组。入选工作于2000年3月开始，于2004年11月结束。

干预方法

手术疗法为对受累的神经根进行标准的开放式椎间盘切除和神经根探查术[5,6]。非手术疗法为“普通疗法”，建议包括积极的物理疗法、指导患者在家进行功能锻炼，如果可以耐受的话，使用非类固醇类抗炎药。非手术治疗应个体化并追踪指导[3-5]。

测量方法

主要终点是在6周、3个月、6个月及此后每年1次评定健康调查SF-36量表的躯体疼痛(Bodily Pain, BP)和躯体功能(Physical Function, PF)评分[7]。如果手术推迟6周以上，需要补充术后6周和3个月的随访数据。次要终点包括患者自诉的症状改善、工作状态、对目前症状和治疗的满意度[9]，以及通过评定坐骨神经不适指数确定其严重程度[10,11]。根据手术与非手术治疗组基线改变均值的不同来判定疗效。

统计分析

初始数据分析是在随机研究和观察队列研究之间，在分别队列和联合队列研究中进行的，比较基线患者特征的均值和比值。每次随访都计算治疗组的数据丢失程度及手术患者的百分比。通过建立一个入选标准(在0.05内，p>0.05排除)的逐步法比例风险回归模型确定手术治疗后，才对两队列的基线时间进行预测。每年的随访丢失预测到4年为止，通过逐步对数回归法来单独确定。任何时间点出现提示手术或非手术的基线特征随后将进入主要结果的纵向模型。在纵向模型中一直表现明显的基线特征将作为可校正的协变量进入随后所有的纵向回归模型，来校正由于治疗选择偏倚和数据丢失方式而产生的潜在混杂因素[15]。另外，基线指标、医疗中心、年龄和性别也包含在所有的纵向结果模型中。

主要的数据分析通过每次随访数据距基线的距离、比较手术与非手术疗法，并建立一个包含多种混杂因素的纵向回归模型，其中有重复测量间的相关性对随机患者的影响。随机队列分析基于意向治疗原则[4]。

结果

总的来说，这项SPORT研究共有1 244例腰椎间盘突出症受试者(501例在随机队列组，743例在观察队列组)。
腰椎间盘突出症的手术与非手术疗法比较

Weinstein et al 19

720例患者进行随机分组
426例无手术适应证
19例伴有骨折、感染或畸形
129例未进行充分的非手术治疗
20例伴有低度
135例有其他原因

743例接受随访
222例接受非手术治疗
471例 (90%) 进行了手术治疗
4 例(2%) 进行了手术治疗

3个月可评估患者
434例可评估患者
84例失访
7例退出
1例死亡
492例 (94%) 进行了手术治疗
55例 (16%) 进行了手术治疗

4年可评估患者
382例可评估患者
76例失访
8例退出
2例死亡
144例 (58%) 进行了手术治疗
493例 (95%) 进行了手术治疗
52例 (23%) 进行了手术治疗

数据收集至2008年4月10日。
表1 各研究队列和治疗组患者的基线人口学特征、伴随疾病和健康状态指标

<table>
<thead>
<tr>
<th></th>
<th>随机队列研究 (n = 473)</th>
<th>观察队列研究 (n = 719)</th>
<th>手术治疗组 (n = 788)</th>
<th>非手术治疗组 (n = 404)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均年龄 (stdev函数)</td>
<td>42.3 (11.6)</td>
<td>41.4 (11.2)</td>
<td>40.7 (10.8)</td>
<td>43.9 (12.2)</td>
</tr>
<tr>
<td>性别</td>
<td>194 (41%)</td>
<td>313 (44%)</td>
<td>340 (43%)</td>
<td>167 (41%)</td>
</tr>
<tr>
<td>种族: 非西班牙血统†</td>
<td>449 (95%)</td>
<td>688 (96%)</td>
<td>752 (95%)</td>
<td>385 (95%)</td>
</tr>
<tr>
<td>人种:白人‡</td>
<td>400 (85%)</td>
<td>633 (88%)</td>
<td>694 (88%)</td>
<td>339 (84%)</td>
</tr>
<tr>
<td>教育程度:至少院校毕业</td>
<td>356 (75%)</td>
<td>528 (73%)</td>
<td>571 (72%)</td>
<td>313 (77%)</td>
</tr>
<tr>
<td>收入:50 000以下</td>
<td>207 (44%)</td>
<td>326 (46%)</td>
<td>367 (47%)</td>
<td>162 (42%)</td>
</tr>
<tr>
<td>吸烟</td>
<td>108 (23%)</td>
<td>174 (24%)</td>
<td>197 (25%)</td>
<td>85 (21%)</td>
</tr>
<tr>
<td>合并疾病</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高血压</td>
<td>97 (21%)</td>
<td>124 (17%)</td>
<td>127 (16%)</td>
<td>94 (23%)</td>
</tr>
<tr>
<td>其他§</td>
<td>221 (47%)</td>
<td>305 (42%)</td>
<td>328 (42%)</td>
<td>198 (49%)</td>
</tr>
<tr>
<td>平均体重指数(BMI), (stdev) §</td>
<td>28 (5.5)</td>
<td>27.9 (5.6)</td>
<td>28.2 (5.7)</td>
<td>27.5 (5.3)</td>
</tr>
<tr>
<td>吸烟</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸烟</td>
<td>26.9 (17.9)</td>
<td>25.2 (18.3)</td>
<td>22.3 (16.2)</td>
<td>32.9 (21.2)</td>
</tr>
<tr>
<td>SF-36躯体功能评分 (PF)</td>
<td></td>
<td>39.5 (25.3)</td>
<td>36.6 (25.6)</td>
<td>32.3 (23.4)</td>
</tr>
<tr>
<td>心理指标评分(MCS)</td>
<td>45.9 (12)</td>
<td>44.7 (11.2)</td>
<td>46.6 (11.4)</td>
<td>46.3 (11.8)</td>
</tr>
<tr>
<td>Oswestry伤残指数 (ODI) **</td>
<td>46.9 (21)</td>
<td>51.2 (21.4)</td>
<td>54.9 (19.6)</td>
<td>38.8 (20.4)</td>
</tr>
<tr>
<td>坐骨神经症状频率指数 (0~24) ††</td>
<td>15.6 (5.5)</td>
<td>15.3 (5.5)</td>
<td>16.7 (5.1)</td>
<td>14.3 (5.6)</td>
</tr>
<tr>
<td>坐骨神经不适指数 (0~24) ‡‡</td>
<td>15.2 (5.2)</td>
<td>15.3 (5.3)</td>
<td>16.4 (4.9)</td>
<td>13.9 (5.6)</td>
</tr>
<tr>
<td>对症状的满意度:非常不满意</td>
<td>370 (78%)</td>
<td>584 (81%)</td>
<td>696 (88%)</td>
<td>258 (64%)</td>
</tr>
<tr>
<td>病情好转或加重</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>病情好转或加重<0.001</td>
<td>90 (19%)</td>
<td>89 (12%)</td>
<td>65 (8%)</td>
<td>114 (28%)</td>
</tr>
<tr>
<td>病情好转或加重</td>
<td>221 (47%)</td>
<td>313 (44%)</td>
<td>338 (43%)</td>
<td>196 (49%)</td>
</tr>
<tr>
<td>倾向于非手术疗法</td>
<td>193 (41%)</td>
<td>201 (28%)</td>
<td>120 (15%)</td>
<td>274 (68%)</td>
</tr>
<tr>
<td>倾向于手术疗法</td>
<td>154 (33%)</td>
<td>43 (6%)</td>
<td>112 (14%)</td>
<td>85 (21%)</td>
</tr>
<tr>
<td>放射痛</td>
<td>458 (97)</td>
<td>704 (98)</td>
<td>772 (98)</td>
<td>390 (97%)</td>
</tr>
<tr>
<td>直腿抬高试验:同侧</td>
<td>291 (62%)</td>
<td>459 (64%)</td>
<td>515 (65%)</td>
<td>235 (58%)</td>
</tr>
<tr>
<td>直腿抬高试验:对侧/双侧</td>
<td>67 (14%)</td>
<td>121 (17%)</td>
<td>149 (19%)</td>
<td>39 (10%)</td>
</tr>
<tr>
<td>任何神经问题</td>
<td>351 (74%)</td>
<td>551 (77%)</td>
<td>617 (78)</td>
<td>285 (71%)</td>
</tr>
<tr>
<td>反射-不对称性减弱</td>
<td>203 (43%)</td>
<td>278 (39%)</td>
<td>325 (41%)</td>
<td>156 (39%)</td>
</tr>
<tr>
<td>感觉-不对称性减弱</td>
<td>222 (47%)</td>
<td>381 (53%)</td>
<td>429 (54)</td>
<td>174 (43%)</td>
</tr>
<tr>
<td>运动-不对称性无力</td>
<td>190 (40%)</td>
<td>311 (43%)</td>
<td>354 (45)</td>
<td>147 (36%)</td>
</tr>
<tr>
<td>椎间盘突出的节段</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-3/L3/L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4-5</td>
<td>32 (7%)</td>
<td>56 (8%)</td>
<td>42 (5%)</td>
<td>46 (11%)</td>
</tr>
<tr>
<td>L5-6</td>
<td>165 (35%)</td>
<td>291 (40%)</td>
<td>305 (39)</td>
<td>151 (37%)</td>
</tr>
<tr>
<td>L5-6</td>
<td>275 (58%)</td>
<td>372 (52%)</td>
<td>441 (56)</td>
<td>206 (51%)</td>
</tr>
<tr>
<td>椎间盘突出的类型</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>腰部</td>
<td>126 (27%)</td>
<td>196 (27%)</td>
<td>204 (26)</td>
<td>118 (29%)</td>
</tr>
<tr>
<td>突出</td>
<td>314 (66%)</td>
<td>469 (65)</td>
<td>530 (67)</td>
<td>253 (63%)</td>
</tr>
<tr>
<td>脱出</td>
<td>32 (7%)</td>
<td>54 (8%)</td>
<td>54 (7%)</td>
<td>32 (8%)</td>
</tr>
<tr>
<td>后外侧突出</td>
<td>389 (80%)</td>
<td>514 (75%)</td>
<td>626 (79)</td>
<td>293 (73%)</td>
</tr>
</tbody>
</table>

*两组研究的患者合并后根据2年内是否接受了手术治疗或只接受了非手术治疗进行分类。
†种族和血统是由患者自我认定的，白人和黑人都可能是西班牙血统或者不是。
‡此类患者包括已经获得经济补偿或已经申请工作补偿、社会保险补偿或其他经济补偿。
§体重指数是体重（千克）除以身高（米）的平方。
¶其他问题包括中风、糖尿病、骨质疏松、癌症、纤维肌痛、癌症家族综合征、创伤后精神紧张性（精神）障碍、酒精或药物依赖、心肺肝肾血管神经系统问题、高血压、偏头痛、焦虑、胃肠疾病。
IISF-36评分范围为0~100, 得分越高神经症状的严重程度越轻。
** Oswestry伤残指数范围为0~100, 分数越低神经症状的严重程度越轻。
††坐骨神经症状频率指数范围为0~24, 分数越低神经症状的严重程度越轻。
‡‡坐骨神经不适指数范围为0~24, 分数越低神经症状的严重程度越轻。
腰椎间盘突出症的手术与非手术疗法比较

Weinstein et al. 21

组)(图1). 在随机队列组中，245例行手术疗法，256例接受非手术疗法，手术组中有57%的患者在1年左右接受手术，非手术组中有41%的患者在1年左右接受手术，45%的患者在4年左右接受手术。在观察队列组中，有521例患者最初选择手术治疗，222例患者最初选择非手术治疗。在最初选择手术治疗的人群中，有95%的患者在1年左右接受手术，59%的患者在4年左右接受手术。在观察队列组中，有41%的患者在1年左右接受手术，45%的患者在4年左右接受手术。将两组患者合并，共有805例患者在最初4年的某一时间进行了手术治疗，439例（35%）患者在4年中坚持非手术治疗。整个4年中，共有1 192例（96%）初始入选者完成至少进行1次随访探视，并包括在结果分析中（随机队列组94%，观察队列组97%）。

病例特点

基线特征的比较见表1。总体上说，各组的结果相似。然而，观察队列组患者带有更多的伤残，更强的手术意愿，更常认为他们的病情在恶化，并且伴有轻度感觉缺失的比例稍高。

表1 同时包含联合队列分析的统计结果。研究对象的平均年龄为41.7岁，手术组平均为40.7岁，非手术组平均为43.9岁。男性稍多于女性。接受手术疗法的受试者比较年轻，仍在坚持工作的比例较低，更易于主诉功能缺失和获得补偿，BMI稍高，关节和其他合并症较少，疼痛更明显，坐骨神经痛更加频发和令人难受，对其症状更加感到苦闷和不满足，更常认为病情在恶化，功能丧失更多，并且更加愿意接受手术疗法。接受手术疗法的受试者也表现出更多的同侧和对侧直腿抬高试验阳性，更多的神经病理表现，更多的感觉和运动功能障碍。影像学方面，他们的椎间盘突出更多发生于L4~L5和L5~S1水平，并向后外侧突出。

非手术治疗

4年里，两组患者非手术治疗的疗效相似。然而，更多的观察队列研究者会去其他医师那里就诊（57%的观察队列研究者 vs. 37%的随机队列研究者，P<0.001）；随机队列研究的患者会更多地行注射治疗（57%的随机队列研究者 vs. 40%的观察队列研究者，P<0.001），且存在更多的活动受限（32%的随机队列研究者 vs. 20%的观察队列研究者，P=0.004），服用更多的麻醉药品（50%的随机队列研究者 vs. 37%的观察队列研究者，P=0.005）。

手术治疗及并发症

总体上，两组的手术治疗及并发症情况相似（表2）。随机队列组患者的平均手术时间稍长（随机队列组为80.6分钟，观察队列组为74.9分钟，P=0.049）。随机队列组手术时间的中位数（四分位间距或范围）为80.6（41，40.9）分钟，观察队列组手术时间的中位数（四分位间距或范围）为74.9（35.5，0.7）分钟。<0.001。
数间距)为70分钟(50.0, 90.0)。随机队列组的平均失血量为67.5 cc, 观察队列组为63.0 cc, P=0.56; 随机队列组失血量的中位数为50 cc(四分位间距: 25%, 75%), 观察队列组为50 cc(25%, 50%)。总共只有6例患者术中需要进行输血。没有患者围手术期死亡。最常见的手术并发症是硬膜撕裂(发生率为3%)。所有患者术后1年、2年、3年、4年的再手术发生率分别为6%, 4%, 3%, 2%。随机队列组和观察队列组间再手术的发生率无显著差异。在81例再次进行了手术的患者中，有75例记录了再手术的方式，大约50%的再手术因不同节段的复发而进行。81例患者中术后90天死亡，死亡原因与其在另一医疗机构进行心脏手术有关; 该例死亡确定与本试验无关，已向机构审查委员会和数据及安全监控委员会报告。

进行交叉治疗的患者

不能坚持治疗对两种疗法的疗效都有影响：手术组的患者选择推迟或拒绝手术，非手术组的患者转而选择手术治疗(图1)。进行交叉治疗的患者中，一些特征不同于未进行交叉治疗的患者(表3)。转行非手术治疗的患者中，非手术组的患者多样，收入较高，并且疼痛和功能障碍较轻，其同侧直腿抬高试验阳性率较低，很少认为其症状较重。椎间盘突出更多发生在高位，倾向于进行非手术治疗，很少对其症状感到不满意。4年内转向手术疗法的患者收入较低，躯体功能较差，自诉的功能障碍更多，多对其症状不满意，认为病情在加重，倾向于进行手术治疗。尽管更多的患者是由非手术疗法转向手术疗法(112例(24%))，少有患者从手术疗法转向非手术疗法(89例(19%))，但根据McNemar's检验，这种差异并不显著(P=0.12)。

主要疗效

意向治疗分析

在对随机队列组进行意向治疗分析时发现，4年后，所有的测量指标都对手术组有利，但在任意时间段上，对任何主要疗效指标的治疗效果都没有统计学意义(表4和图2)。在1年时的意向治疗分析中，次要疗效指标(坐骨神经不适指数和自我认定的病情改善)对手术治疗有利; 4年后，只有坐骨神经不适指数仍有统计学意义(表4和图3)。

治疗处理分析

总体假设检验(未给出)比较了所有时段随机队列组和观察队列组治疗效果的治疗处理分析结果，显示随
表4 随访3年和4年时的主要疗效分析结果。随机队列试验的意向治疗分析和随机队列-观察队列联合研究的治疗相关的校正后分析结果

<table>
<thead>
<tr>
<th>主要疗效指标</th>
<th>2年</th>
<th>3年</th>
<th>4年</th>
</tr>
</thead>
<tbody>
<tr>
<td>基线总体均值</td>
<td>(n=187)</td>
<td>(n=180)</td>
<td>(n=149)</td>
</tr>
<tr>
<td>手术组</td>
<td>26.9(0.82)</td>
<td>39.2(0.2)</td>
<td>41.3(2.1)</td>
</tr>
<tr>
<td>非手术组</td>
<td>37.5(1.3)</td>
<td>36.2(2)</td>
<td>36.8(2.1)</td>
</tr>
<tr>
<td>疗效</td>
<td>31.1(1.7)</td>
<td>27.2(1.7)</td>
<td>26.1(1.6)</td>
</tr>
<tr>
<td>(95% CI)†</td>
<td>-4.3(-9.1, 0.6)</td>
<td>-12.8(-16.5, 1.7)</td>
<td>-6.6(-12.6, 0.4)</td>
</tr>
<tr>
<td>随机队列试验(RCT)的意向性治疗分析</td>
<td>(n = 187)</td>
<td>(n = 180)</td>
<td>(n = 149)</td>
</tr>
<tr>
<td>主要疗效指标</td>
<td>SF-36躯体疼痛评分(BP) (0-100) (SE)‡</td>
<td>26.9 (0.82)</td>
<td>40.5 (0.82)</td>
</tr>
<tr>
<td></td>
<td>SF-36躯体功能评分(PF) (0-100) (SE)§</td>
<td>37.5 (1.3)</td>
<td>37.7 (2)</td>
</tr>
<tr>
<td></td>
<td>Oswestry伤残指数(ODI) (0-100) (SE)¶</td>
<td>31.1 (1.7)</td>
<td>27.2 (1.7)</td>
</tr>
<tr>
<td>次要疗效指标</td>
<td>坐骨神经不适指数(0-24) (SE)‖</td>
<td>15.5 (0.1)</td>
<td>10.9 (0.21)</td>
</tr>
<tr>
<td></td>
<td>腿痛指数(0-6) (SE)**</td>
<td>4.7 (0)</td>
<td>-3.5 (0.1)</td>
</tr>
<tr>
<td></td>
<td>对症状满意度(%):非常满意/稍感满意</td>
<td>75.7</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>自我评价改善:大部分改善 (%)</td>
<td>75.7</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>工作状态:工作中 (%)</td>
<td>64.3(4.8)</td>
<td>75</td>
</tr>
</tbody>
</table>

*对年龄、性别、婚姻状态、吸烟状况、种族、收入、椎间盘突出的节段、工作状态、胃部合并症、抑郁及其他合并症、自我评价健康趋势、对近期症状的耐受、治疗倾向、SF-36和ODI量表的基线评分以及不同医疗中心进行校正的分析结果。
†手术与非手术疗法相对于基线的平均变化不同，疗效不同。
‡ SF-36量表评分范围为0~100，分数越高神经症状的严重程度越轻。
§ Oswestry伤残指数范围为0~100，分数越低神经症状的严重程度越轻。
‖坐骨神经不适指数范围为0~24，分数越低神经症状的严重程度越轻。
**腿痛指数范围为0~6，分数越低神经症状的严重程度越轻。
††治疗处理分析的样本含量反映了纵向建模设计的某一时段的参试患者的数量，此方法已部分解释，并不一定与图1中每次随访时的病例数一致。
***其他合并症包括中风、糖尿病、骨质疏松、癌症、纤维肌痛、癌症家族综合征、创伤后精神紧张性(精神)障碍、酒精或药物依赖、心肺肝肾血管神经系统问题、高血压、偏头痛、焦虑、胃肠疾病。
†‡ 1年和2年时椎间盘突出症的随机临床试验的意向治疗分析结果与JAMA的文中结果（见参考文献）不同，这是由于建模不同所致。
机队列与观察队列之间没有差异（对于SF-36 BP，
P=0.44；对于SF-36 PF，P=0.76；对于ODI，P=0.90）。在2
年时进行的联合治疗处理分析中，对主要疗效指标的治
疗效果具有显著统计学差异，这种显著性差异一直保持到4
腰椎间盘突出症的手术与非手术疗法比较

Weinstein et al 25年后:

SF-36 BP 为 15.0, \(P < 0.001 \) (95% CI: 11.8~18.1);
SF-36 PF 为 14.9, \(P < 0.001 \) (95% CI: 12.0~17.8);
ODI 为 -13.2, \(P < 0.001 \) (95% CI: -15.6~10.9)（表4）。表4的下标描述了最终模型的协变量控制。

两组意向治疗分析和治疗处理分析结果的比较见图2。两组治疗处理分析的治疗效果明显有利于手术疗法。在联合分析中，各时间点对所有主要和次要疗效指标（除工作状态外）的治疗效果都有统计学意义，都有
利于手术疗法（表4和图3）。

在3个月到2年这一时段内，对次要疗效评价指标（坐骨神经不适指数，满意度和自我评价改善）的治疗效果的差异有所减小，但所有时期的差异仍有统计学意义。3个月时，由于需要术后恢复，手术组患者的工作状态明显变差；此后的工作状态稍有利于支持手术疗法，但无显著差异。4年时，手术组患者工作状态改善的百分比为84.4%，非手术组为78.4%，治疗效果为6.0（95% CI: -0.9, 12.9）（表4和图3）。

■ 讨论

在影像学检查确诊为椎间盘突出且腿部症状至少持续6周的患者中，在减轻症状和改善功能方面，手术疗法优于非手术疗法。治疗处理分析的结果显示，手术的疗效早在术后6周就开始显现，到6个月时达到最大值，并且维持4年以上。值得注意的是，非手术疗法的疗效也是显著的，并且维持了整整4年。如有理由假设，由交叉治疗导致的治疗混杂会造成偏倚，从而使意向治疗分析的结果失去了效力[2,17]。而在校正了交叉治疗患者的特征之后，治疗处理分析显示有巨大疗效，提示意向治疗分析的结果低估了手术疗法的真实疗效。

SPORT研究的数据得到了Peul等关于椎间盘突出的随机试验的支持，在后一项试验中，随机分到非手术组的患者中有39%在大约5个月时改行手术治疗。这几乎与SPORT研究完全一致，SPORT研究中有38%的非手术组患者在6个月时改行手术治疗。这项研究的总共有3个比较组，非手术组和手术组，以及一个对照组（接受非手术治疗的患者）。在6个月时，运动组患者的疼痛指数比非运动组低，但这种差异在1年后仍然存在。此外，手术组患者的疼痛指数在1年后仍然低于非手术组。

在长期随访中，运动组和非运动组的患者在腰痛和腿痛的改善程度上没有显著差异。然而，运动组的患者在自我评价的改善上明显优于非运动组。这些结果表明，运动疗法在改善椎间盘突出症患者的疼痛和功能方面是有效的。

SPORT研究的另一项重要发现是，运动组的患者在1年和2年时的随访中，其腰痛和腿痛的改善程度均优于非运动组。这种差异在3年后仍然存在。此外，运动组的患者在自我评价的改善上也明显优于非运动组。

运动疗法对于椎间盘突出症患者的治疗效果是显著的，尤其是在改善疼痛和功能方面。这些结果表明，运动疗法是一种有效的治疗椎间盘突出症的方法，值得在临床实践中推广。
局限性

虽然我们的结果对交叉患者的特点进行了校正，并对重要的基线协变量进行了控制，但是在排除混杂因素影响方面，治疗处理分析不如意向治疗分析[1-4]。然而，治疗处理分析的结果与既往研究和Peul等的一个设计良好的随机试验的结果相似[2]。另一个局限性是非手术疗法的异质性，已经在我们先前的文章里进行过讨论。

■ 结论

将随机队列和观察队列综合起来（仔细控制了可能混杂的基线因素）进行治疗处理分析发现，4年后，与非手术治疗的患者相比，手术治疗的椎间盘突出症患者在疼痛、功能、满意度和自我评价的改善方面均表现为更显著的提高。虽然症状有改善，但除外术后前6周，工作状态似乎与治疗方法并不相关。

要点

- 4年随访中，根据治疗处理分析，与坚持非手术治疗的患者相比，行手术治疗的椎间盘突出症患者在所有主要疗效指标上都获得了更大的改善。
- 4年随访中，除了工作状态外，手术组在所有的次要疗效指标上都保持了显著的优势。
- 4年随访中，在工作状态方面，手术组并未表现出显著的优势。

致谢

我们感谢Dartmouth医学院骨外科的Tamara S. Morgan设计制作了图形和期刊界面，也感谢她在SPORT研究从最初投稿到最后发表的过程中所给予的帮助。Ms. Morgan得到了骨外科、Dartmouth研究所的资助，也得到了SPORT研究的部分资助。

本研究专门献给Brieanna Weinstein。

各机构入选患者的人员（按随机队列登记的顺序）：William Abdu (Dartmouth-Hitchcock医学中心)；David Montgomery、Harry Herkowitz (William Beaumont医院)；Ted Conliffe、Alan Hilibrand (Thomas Jefferson医院Rothman研究所)；Perry Ball (Dartmouth)；Frank Cammisa (纽约特殊外科医院)；S. Tim Yoon (Emory大学–Emory诊所)；Randall Woodward (Nebraska脊柱研究基金会)；Brett Taylor (Washington大学)；Todd Albert (Rothman)；Richard Schoenfeldt (关节病医院)；Jonathan Fuller (Nebraska脊柱研究基金会)；Harvinder Sandhu (纽约特殊外科医院)；Scott Boden (Emory)；Carolyn Murray (Dartmouth)；Michael Longley (Nebraska脊柱研究基金会)；Ronald Moskovich (关节病医院)；Keith Bridwell (Washington大学)；John McClellan (Nebraska脊柱研究基金会)；Lawrence Lenke (Washington大学)；Ferdy Massimino (Kaiser Permanente)；Lawrence Kurz (Beaumont)；Joseph Dryer (关节病医院)；Sanford Emery (Cleveland/Case Western Reserve大学医院)；Susan Dreyer、Howard Levy (Emory)；Patrick Bowman (Nebraska脊柱研究基金会)；Thomas Errico (关节病医院)；Lee Thibodeau (Maine Spine and Rehabilitation)；Jeffrey Fischgrund (Beaumont)；Mark Splaine (Dartmouth)；John Bendo (关节病医院)；Taylor Smith (California–San Francisco大学)；Eric Phillips (Nebraska脊柱研究基金会)；Dilip Sengupta (Dartmouth)；David Hubbell (Emory)；Henry Schmidek (Dartmouth)；Harley Goldberg (Kaiser)；Robert Rose (Dartmouth)；Sig Berven (California–San Francisco大学)；Frank Phillips、Howard An (Rush-Presbyterian-St Luke's医学中心)；Colleen Olson (Dartmouth)；Anthony Margherita、John Metzler (Washington大学)；Jeffrey Goldstein (关节病医院)；Phaedra Mcdonough (Dartmouth)；James Farmer (纽约特殊外科医院)；Marsolais (Case Western)；Gunnar Andersson (Rush-Presbyterian-St Luke's)；Hilda Magnadottir、Jim Weinstein、Jon Lurie (Dartmouth)；J. X. Yoo (Case Western)；John Heller (Emory)；Jeffrey Spivak (关节病医院)；Roland Hazard (Dartmouth)；Michael Schaufele

青少年特发性脊柱侧凸的术后胸椎后凸矫形效果
三种术式多中心比较

Restoration of Thoracic Kyphosis After Operative Treatment of Adolescent Idiopathic Scoliosis
A Multicenter Comparison of Three Surgical Approaches

Daniel J. Sucato, MD, MS,* Sundeep Agrawal, BA,* Michael F. O’Brien, MD,† Thomas G. Lowe, MD,‡ Stephens B. Richards, MD,* and Lawrence Lenke, MD§

研究设计：多中心分析三组特发性脊柱侧凸（AIS）手术治疗的患者。

目的：评价三种术式在改善胸椎后凸中最有矫形效果。

研究背景：青少年特发性脊柱侧凸畸形表现为平背畸形，可能需要手术矫正到正常后凸。

方法：多中心回顾性分析青少年特发性脊柱侧凸的手术治疗结果，患者包括结构性主胸弯（Lenke1型、2型或3型），并且内固定范围局限在主胸弯。侧位X线片测量患者术前和术后6~8周、1年、2年矢状面角度，对三组患者的结果进行比较并进行统计学处理，P<0.05被视为有统计学意义。

结果：三组患者情况如下：①脊柱前路内固定融合组（ASF组）（n=135）；②脊柱后路混合内固定融合组（PSF-Hybrid组）（n=86），远端采用骨钩、颈椎采用钛缆、远端采用椎弓根螺钉内固定；③脊柱后路单用骨钩内固定融合组（PSF-Hooks组）（n=132）。各组患者术前冠状面主胸弯（ASF：50.6°，PSF-Hybrid：49.1°，PSF-Hooks：52.0°）和胸椎后凸（ASF：23.7°，PSF-Hybrid：19.3°，PSF-Hooks：21.9°）差别不大。在手术以后，ASF组（25.1°）T5-T12胸椎后凸矫形效果优于PSF-Hooks组（19.0°）和PSF-Hybrid组（18.5°）（P<0.05）。在术后第1年，ASF组（28.8°）胸椎后凸（T5-T12）比PSF-Hybrid组（22.6°）和PSF-Hooks组（20.2°）更明显（P<0.05），在术

后第二年仍然如此（29.9° vs. 23.8°和19.7°）（P<0.05）。在PSF-Hybrid组未见到胸腰段后凸，而只有ASF组出现伴随胸椎后凸增高而出现的腰前凸增加。

结论：与后路入路仅用骨钩或者混合内固定相比，在治疗青少年特发性脊柱侧凸时采用脊柱前路内固定融合是恢复胸椎后凸最好的方法。

关键词：胸椎后凸；青少年特发性脊柱侧凸；矢状面。

Spine 2008;33:2630–2636

青少年特发性脊柱侧凸（adolescent idiopathic scoliosis，AIS）主要治疗目的之一是获得最大限度的冠状面的矫形，同时保持冠状面平衡。然而，维持或者恢复矢状面的参数在保持脊柱长期健康的重要性方面越来越重要[1,2]。青少年特发性脊柱侧凸患者常常伴有平背畸形（0°~20°），通常在手术治疗胸椎特发性侧凸的同时矫正矢状面畸形，将胸椎后凸恢复到正常范围（20°~40°），同时维持腰椎前凸和脊柱整体矢状面平衡。

采用前路内固定、后路骨钩内固定、后路混合内固定（骨钩、钛缆、椎弓根螺钉）三种术式治疗青少年特
发性脊柱侧凸，对于患者的胸椎后凸矫形效果，目前缺乏大量的文献报道。与后路全部采用骨钩内固定相比，我们假设采用前路手术和后路混合内固定配合椎间植骨手术能够更好地矫正胸椎后凸。

本研究旨在对比三种术式对于胸椎矢状面畸形的矫正效果，与后路全部采用骨钩内固定相比，我们假设胸椎后凸能够在前路手术和后路混合内固定配合椎间植骨获得更好地矫正。

材料和方法

经机构委员审查会批准，对1992-2000年间接受手术治疗的AIS患者进行多中心回顾性研究（来自22个机构的39名外科医生）。患者人选标准：诊断为AIS患者，结构性胸弯（Lenke1型、2型或3型），共有353例患者被确定符合人选标准。人选者数据来自病历记录，包括术前的身高、体重、性别、体重指数（BMI）。根据手术记录来确定手术时的手术方式（前路、后路或混合术）。患者根据术式被分为三组：①脊柱前路内固定、融合组（PSF-Hooks组，n=132）；②脊柱后路混合内固定、融合术组（PSF-Hybrid组，n=86）；③脊柱后路单用骨钩内固定融合组（PSF-Hybrid组，n=135）。

在前、中位线片上，采用Cobb方法测量术前主胸弯角度。采用尽最大努力进行侧弯后的Bending前后位X线片进行Lenke分型。在侧位X线片上采用Cobb方法测量矢状面角度：分别从T5-T12和T2-T12测量胸椎后凸，从T2-T5测量近端交界性后凸，从T10-L2测量腰椎间后凸，从T12-S1测量腰椎前凸测量。角度测量时点分别在术前、术后6~12周和术后1年。正值表示胸椎后凸，负值表示脊柱前凸，各单位机构测量本单位的患者，这些数据都记录在多中心数据库中。当患者T2-T5和T10-L2的角度值大于10°，认为存在术后近端和远端交界性后凸。胸椎过度后凸定义为在每个时间点测量T5-T12的角度大于40°。

统计分析用统计分析软件9.1版本（SAS Institute, Cary, NC），各组间均数采用一般线性模型和Tukey方法进行比较，卡方分析用来比较各组真实的交界区后凸和过度后凸。P<0.05被视为有统计学差异。

结果

人口统计学分析

三组患者的手术时年龄、骨骼成熟程度和BMI相类似（表1）。Lenke分型在AIS组、PSF-Hybrid组和PSF-Hooks组相似，Lenke1型（43.3% vs. 53.1% vs. 54.3%）、Lenke2型（55.1% vs. 45.7% vs. 44.9%）、Lenke3型（16.6% vs. 12.0% vs. 8.8%）（P=0.44）。

手术分析

与PSF-Hybrid组（255.0分钟）和PSF-Hooks组（254.9分钟）相比，AIS组患者手术时间明显延长（平均350.7分钟）（表1）。这可能由于AIS组患者中部分采用胸腔镜进行内固定和融合手术（n=42，占AIS组患者的31.1%）。前路手术组患者失血量明显少于其他两组后路手术组（AIS组：667.9 ml, PSF-Hooks组：882.6 ml vs. PSF-Hybrid：988.4 ml）（表1）。

影像学分析

术前冠状面主胸弯角度在AIS组、PSF-Hybrid组和PSF-Hooks组结果相似（51.0±11.2° vs. 49.6±13.5° vs. 52.0±10.1°）。AIS组患者融合节段明显少于PSF-Hooks组和PSF-Hybrid组（6.7 vs. 8.7 vs. 9.6）（P<0.0001）。

<table>
<thead>
<tr>
<th>年龄（岁）</th>
<th>A IS组 (n=135)</th>
<th>PSF-Hooks组 (n=132)</th>
<th>PSF-Hybrid组 (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>19.8±3.5</td>
<td>21.5±4.8</td>
<td>20.3±3.8</td>
</tr>
<tr>
<td>手术时间（分钟）</td>
<td>350.7±141.1</td>
<td>254.9±87.1</td>
<td>255.0±73.4</td>
</tr>
<tr>
<td>EBL（cc）</td>
<td>667.9±436.9</td>
<td>882.6±777.8</td>
<td>988.4±576.9</td>
</tr>
<tr>
<td>Risser</td>
<td>2.8±1.1</td>
<td>3.0±1.1</td>
<td>3.0±1.0</td>
</tr>
</tbody>
</table>

*与PSF-Hooks组和PSF-Hybrid组比较P<0.05。
所有数据为均值±标准差。
胸椎后凸矫形效果

 Sucato et al 31

上胸椎后凸角度（T2-T5）

各组术前T2-T5后凸角度相似（表2），在术后6~8周、1年和2年也同样相似。重要的是，后路手术的两组患者在术前和术后2年的时间段内上胸椎后凸有部分增加。当比较各组T2-T5是否确实存在交界性后凸（诊断标准为后凸大于10°），ASF组、PSF-Hooks组和PSF-Hybrid组在术前数据相似（35.7% vs. 38.5% vs. 48.3%）（P=0.55）。术后6~8周，这种情况仍然存在（30.7% vs. 58.8% vs. 66.7%）（P=0.21）。但在术后1年时，PSF-Hybrid组出现大量的交界性后凸患者（25.7% vs. 34.0% vs. 59.2%）（P=0.02），这种情况明显持续到术后2年随访时（25.0% vs. 38.8% vs. 55.2%）（P=0.04）。

胸椎后凸（T5-T12）

三组患者术前胸椎后凸相似，T5-T12的后凸角度介于19°~25°之间（表3）。术后6~8周时，ASF组患者胸椎后凸角度增加到25.1°，而PSF-Hooks组和PSF-Hybrid组分别下降到19.0°和18.5°（P＜0.05）。从术后6~8周到1年、2年各组的数值增加结果相似，平均在2°~5°之间。术后1年和2年ASF组与PSF-Hooks组和PSF-Hybrid组相比，胸椎后凸获得更明显的矫正，术后1年结果（28.8° vs. 22.6° vs. 20.2°）（P＜0.05）和术后2年结果（29.9° vs. 23.8° vs. 19.7°）（P＜0.05）。比较每组中脊柱过度后凸（大于40°）的患者所占比例，ASF组、PSF-Hooks组和PSF-Hybrid组术前结果相似（12.9% vs. 8.1% vs. 7.3%）（P=0.54）。术后6~8周，ASF组更多患者出现过度后凸（10.7% vs. 0.0% vs. 5.6%）（P=0.056）。这种差异在术后1年（17.4% vs. 7.3% vs. 2.1%）（P=0.01）和术后2年（22.4% vs. 3.7% vs. 1.9%）（P＜0.0001）时仍持续存在。

胸腰交界区（T10-L2）

术前三组患者胸腰段都存在轻微的前凸（表4）。术后6~8周，PSF-Hybrid组与ASF组和PSF-Hooks组相比前凸更加明显。术后1年和2年，PSF-Hybrid组患者与其他两组相比胸腰段后凸更少，尽管这种现象并不十分明显。术后1年和2年时，PSF-Hybrid组交界区后凸的患者明显减少（11.0% vs. 17.4% vs. 13.6%）（P=0.58）和2年时（14.1% vs. 17.4% vs. 13.6%）（P=0.71）这种趋势仍然持续，但并无统计学意义。

表2 上胸椎后凸（T2-T5）（度）

<table>
<thead>
<tr>
<th></th>
<th>ASF组 (n=135)</th>
<th>PSF-Hooks组 (n=132)</th>
<th>PSF-Hybrid组 (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前</td>
<td>9.5±9.7</td>
<td>8.6±6.4</td>
<td>10.4±8.1</td>
</tr>
<tr>
<td>术后6~8周</td>
<td>8.0±6.8</td>
<td>13.2±7.8</td>
<td>8.8±7.2</td>
</tr>
<tr>
<td>1年</td>
<td>9.9±8.0</td>
<td>9.2±6.9</td>
<td>12.8±7.7</td>
</tr>
<tr>
<td>2年</td>
<td>9.3±7.5</td>
<td>9.9±7.1</td>
<td>13.2±8.6</td>
</tr>
</tbody>
</table>

所有数据为均值±标准差。

表3 胸后凸修复（T5-T12）（度）

<table>
<thead>
<tr>
<th></th>
<th>ASF组 (n=135)</th>
<th>PSF-Hooks组 (n=132)</th>
<th>PSF-Hybrid组 (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前</td>
<td>23.7±16.1</td>
<td>21.9±13.0</td>
<td>19.3±12.7</td>
</tr>
<tr>
<td>术后6~8周</td>
<td>25.1±14.9*</td>
<td>19.0±8.4</td>
<td>18.5±10.0</td>
</tr>
<tr>
<td>1年</td>
<td>28.8±18.6*</td>
<td>22.6±10.6</td>
<td>20.2±9.8</td>
</tr>
<tr>
<td>2年</td>
<td>29.9±12.2*</td>
<td>23.8±10.1</td>
<td>19.7±9.5</td>
</tr>
</tbody>
</table>

*与PSF-Hooks组和PSF-Hybrid组比较P＜0.05。
所有数据为均值±标准差。
腰椎前凸（T12-S1）

由于腰弯柔软并且为代偿弯，因此仅仅融合胸弯，所以在我们的病例中均选择胸弯进行内固定，而腰弯为代偿弯。与PSF-Hooks组相比，ASF组和PSF-Hybrid组患者术前腰椎前凸更小（表5）。三组患者术后矫正结果类似，术后1年和2年时，ASF组与PSF-Hook组和PSF-Hybrid组相比，腰椎前凸的角度更大。

■ 讨论

各种手术入路和不同的内固定方法可以影响术后矢状面的参数[6,8,13]。Betz等[3]证实前路内固定对于纠正后凸不足比后路（大多使用骨钩）更加有效。我们研究了三种不同的术式（前路脊柱融合，后路仅采用骨钩进行脊柱融合，以及后路采用骨钩、钛缆和椎弓根螺钉混合内固定进行脊柱融合），此研究为多样本、多中心对比三种术式对改善胸椎矢状面畸形的效果。

本研究的最主要发现是脊柱前路内固定和融合（图3A-D）较后路混合内固定（图4A-D）及单用骨钩内固定（图5A-D）可以获得更好的T5-T12胸椎后凸矫形效果。在术后6~8周、1年、2年，ASF组患者的胸椎后凸明显改善。这一发现与Potter等[14]的研究结果一致，他们对比脊柱前路融合术与脊柱后路融合术治疗Lenke 1型侧凸患者，发现脊柱前路手术患者比脊柱后路手术患者获得了更多的胸椎后凸矫正（5.7° vs. 4.4°）（p<0.004）。在这项研究中，对患者进行1年和2年的随访发现，后路手术胸椎后凸较小的患者容易出现上胸段T2-T5后凸。

脊柱前路手术的矫形力主要通过悬臂力和压缩力作用于椎体前柱进行胸椎侧凸矫形，这些矫形策略进行脊柱凸侧压缩和前柱短缩同时产生后凸。最近Luljenqvist等[15]证实这一发现，他们通过对23例胸弯患者进行前路双棒内固定，胸椎后凸由术前29.2°增大到术后最近随访时的33.6°。Rhee等[9]也发现相似的结果，证实前路内固定比后路内固定更容易造成胸椎后凸，他们部分解释了这一发现，由于在后路手术中应用缆线、撑开或转棒（所有这些方法都会减少胸椎后凸）。本研究包括后路混合内固定，这些矫形技术和前路内固定能够最有效的恢复胸椎后凸。

对青少年特发性脊柱侧凸患者来讲，前路内固定最主要的禁忌证之一是术前脊柱过多后凸。D’Andrea等[5]评估了47例骨骼未成熟患者（Risser 0），观察前路内固定和融合后的矢状面变化，他们认为术前脊柱后凸大于40°的患者并不适合进行前路内固定和融合术，特别是当患者骨骼发育不成熟时，因为脊柱后部结构持续生长而前侧已经融合，导致脊柱过度后凸。这与本研究的结果相一致，前路手术患者术前胸椎后凸平均23.7°，Risser征平均2.8°，尽管如此，在随后的2年随访中，22.4%的患者胸椎后凸角度大于40°，但无患者要求再次手术。这些患者出现相当高的过度后凸发生率可以从术前的胸椎后凸角度得到解释，有近60.0%的患者术前胸椎后凸大于20°，27.8%的患者术前大于30°。对于术前胸椎后凸大于30°，特别是骨骼发育不成熟的患者，我们推荐采用后路矫形技术。

胸腰段交界区（T10-L2）在矢状面应该轻度前凸或正常，维持这一矢状面曲度并避免远端交界性后凸，这

表4 胸腰交界区（T10-L2）（度）

<table>
<thead>
<tr>
<th></th>
<th>ASF组 (n=135)</th>
<th>PSF-Hooks组 (n=132)</th>
<th>PSF-Hybrid组 (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前</td>
<td>-0.4 ± 10.4</td>
<td>-2.6 ± 10.5</td>
<td>-1.4 ± 10.7</td>
</tr>
<tr>
<td>术后6-8周</td>
<td>-0.9 ± 13.0</td>
<td>0.6 ± 8.7</td>
<td>-3.9 ± 7.8*</td>
</tr>
<tr>
<td>1年</td>
<td>1.1 ± 9.6</td>
<td>2.0 ± 9.3</td>
<td>0.1 ± 9.2</td>
</tr>
<tr>
<td>2年</td>
<td>0.7 ± 9.3</td>
<td>1.9 ± 9.8</td>
<td>0.3 ± 12.1</td>
</tr>
</tbody>
</table>

*与PSF-Hooks组和ASF组比较P<0.05
所有数据均为均值±标准差。

表5 腰椎前凸（T12-S1）（度）

<table>
<thead>
<tr>
<th></th>
<th>ASF组 (n=135)</th>
<th>PSF-Hooks组 (n=132)</th>
<th>PSF-Hybrid组 (n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前</td>
<td>-40.0 ± 42.8</td>
<td>-57.1 ± 24.6*</td>
<td>-36.7 ± 46.7</td>
</tr>
<tr>
<td>术后6-8周</td>
<td>-51.7 ± 20.1</td>
<td>-55.5 ± 12.0</td>
<td>-50.6 ± 9.8</td>
</tr>
<tr>
<td>1年</td>
<td>-50.8 ± 29.8</td>
<td>-55.5 ± 25.7</td>
<td>-26.8 ± 49.6†</td>
</tr>
<tr>
<td>2年</td>
<td>-48.6 ± 33.4</td>
<td>-55.3 ± 23.1</td>
<td>-32.3 ± 45.8‡</td>
</tr>
</tbody>
</table>

*与PSF-Hybrid组和ASF组比较P<0.05
†与ASF组和PSF-Hook组比较P<0.05
‡与ASF组和PSF-Hook组比较P<0.05
所有数据均为均值±标准差。
胸椎侧凸矫形效果

是内固定器械进行胸椎侧凸矫形时遇到的挑战。Lowe等[16]报道，术前存在终远端交界性后凸（DJK）的患者，术后更容易出现胸腰段/腰段交界性后凸。本研究证实，术前DJK患者前路术后交界性后凸达到12°，而术前没有DJK的患者术后只有2°。术前DJK患者后路术后交界性后凸达到17°，而术前没有DJK的患者术后为2°。因此，

表6 三组的胸腰交界区（T10-L2）（度，%）

<table>
<thead>
<tr>
<th></th>
<th>ASF组(n=135)</th>
<th>PSF-Hooks组(n=132)</th>
<th>PSF-Hybrid组(n=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>术前</td>
<td>51.0±11.2</td>
<td>52.0±10.1</td>
<td>49.6±13.5</td>
</tr>
<tr>
<td>术后6~8周 (矫正率%)</td>
<td>19.8±10.3 (59.3±19.2)</td>
<td>18.5±8.2 (63.4±14.8)</td>
<td>16.1±7.6* (68.1±13.9)</td>
</tr>
<tr>
<td>1年 (矫正率%)</td>
<td>21.2±10.2 (57.6±18.9)</td>
<td>23.4±10.3 (55.5±16.9)</td>
<td>18.4±9.7† (61.8±20.0)</td>
</tr>
<tr>
<td>2年 (矫正率%)</td>
<td>22.5±9.7 (55.0±18.2)</td>
<td>23.4±9.7 (55.2±17.5)</td>
<td>18.5±9.9† (61.9±19.1)</td>
</tr>
</tbody>
</table>

*与ASF组比较P<0.05。
†与PSF-Hooks组和ASF组相比，P<0.05。
所有数据为均值±标准差。

图3 （ASF组）A和B，这是15+7岁女性患者术前T5-T12水平主胸弯53°，胸后凸23°。C和D，她接受胸腔镜下T5-T12水平的前路融合和内固定术。2年随访时证实其矫正效果好，主胸弯角度为22°，胸后凸改善为29°。

图4 （PSF-Hybrid组）A和B，这是17+8岁女性患者术前T6-T12水平主胸弯60°，胸后凸15°。C和D，她接受T2-L1水平的后路融合及内固定术。2年随访时证实其矫正效果好，主胸弯角度为17°，胸后凸改善为20°。
对于怀疑存在交界性后凸患者好的术前计划应该包括最远端胸椎,而对于术前明显存在交界性后凸患者,内固定和融合节段应当包括胸椎和腰椎。我们的研究结果证实采用混合后路内固定,术后6~8周没有出现胸腰段交界性后凸。然而,对这些青少年患者缺乏长期的随访,故不能确定胸椎后凸较少是否导致更坏的临床结果。而且,没有研究报道最理想的胸椎后凸角度,但是几项研究已经证实必须避免术后脊柱过度后凸。然而,本研究证实前路内固定对胸椎后凸恢复能力最强,对于Lenke 1型和3型骨骼未成熟患者应当避免造成过度后凸。然而,这些结果建议后路手术采用混合内固定和融合,远端采用椎弓根螺钉可以减少胸腰段交界性后凸的发生。

尽管很少研究报道\[2,4,9,12\],差的矢状面矫形可导致功能降低,但似乎恢复胸椎后凸是影响脊柱长期结果的主要变量之一。Emami等\[17\]证实,脊柱矢状面失代偿的患者比平衡好的患者有明显的疼痛。在54例成年脊柱畸形患者中矢状面失平衡可导致假关节形成和内固定失败。然而,对这些青少年患者缺乏长期的随访,故不能确定胸椎后凸较少是否导致更坏的临床结果。而且,没有研究报道颈段胸椎后凸恢复能力最强,对于Lenke 1型和3型骨骼未成熟患者应当避免造成过度后凸。然而,这些结果建议后路手术采用混合内固定和融合,远端采用椎弓根螺钉可以减少胸腰段交界性后凸的发生。

本研究也存在局限性,由于未采取完全随机分组,而回顾性研究也会增加选择性偏差,从而使胸腰段后凸患者选择后路内固定融合,范围包括胸腰段。但是,由于它的组间差异较小,所以远端融合节段会在一定程度上抵消这种误差。同时,平背患者可能更多选择前路手术。本研究也并没有区别那些后柱采用粗棒内固定的患者,是否较坚硬的内固定可以维持或者获得更多的胸椎后凸矫正。由于每个研究机构只测量自己单位的患者,这可能导致测量方面的少量误差。最后,尽管前路手术患者可以获得更多的胸椎后凸矫正,但是我们没有评价患者整体功能的结果或者变化,以及肺功能的改善状况,所以,在此问题上尚需进一步的研究。

结论

脊柱侧凸手术获得正常的矢状面矫形（正常的胸椎后凸和前凸）对于脊柱的长期健康至关重要。与采用骨钩或者混合内固定相比,前路脊柱融合和内固定手术在治疗青少年特发性脊柱侧凸中能够更好的矫正平背畸形,并且没有造成过度后凸。本研究证实,采用后路混合内固定与前路内固定和PSF-Hybrid组内固定性后凸较少。当准备在矢状面对青少年特发性胸椎侧凸患者进行最佳矫正时,前路脊柱融合和内固定能够最有效地矫正胸椎后凸到正常范围。
要点

- 前路脊柱融合和内固定是恢复青少年特发性脊柱胸弯患者胸椎后凸最有效的方法。
- 后路融合和混合内固定的远端采用椎弓根螺钉可以避免胸腰段交界性后凸，而采用前路内固定和后路仅用骨钩内固定可以出现胸腰段交界性后凸。
- 腰椎前凸只有采用前路内固定才相应增加，并在各组中获得最好的矢状面矫形。

参考文献

(解放军总医院 程自申 毛克亚)
Comparison of Compensatory Curve Spontaneous Derotation After Selective Thoracic or Lumbar Fusions in Adolescent Idiopathic Scoliosis

Todd F. Ritzman, MD,* Vidyadhar V. Upasani, MD,† Tracey P. Bastrom, MA,‡ Randal R. Betz, MD,§ Baron S. Lonner, MD,¶ and Peter O. Newton, MD†‡

屠冠军 译

研究设计：对多个中心预期收集的青少年脊柱侧弯（AIS）病例进行回顾性研究。

目的：在AIS病例中进行选择性腰椎或胸椎融合术后，比较未行内固定节段肋骨凸起和腰椎凸起的代偿性弧度自发性去旋转的程度。

研究背景：AIS选择性融合术后，未融合节段较小弧度的脊椎侧弯的矫正在之前已得到很好的证实。尽管如此，仍没有AIS选择性融合术后未融合节段较小弧度的脊椎侧弯的自发性矫正的报道。

方法：选择性胸椎融合（STF），即固定最低位置在L2或以上，或选择性腰椎融合（固定最高位置在T9或以下）后至少随访2年，且术前为较小弧度侧弯的AIS患者被纳入分析。收集术前和术后X射线，测量并对比融合和未融合弧度侧弯的变化，并且进行单因素方差分析。数据通过正态和方差齐性检测，显著水平控制在P≤0.05。

结果：STF患者（n=83）胸廓肋骨凸起的改善明显，从术前的15°±5°到2年随访时的7°±4°（P≤0.001）。2年随访患者中未融合节段弧度腰椎凸起的自发改善也很明显，从术前的19°±5°到术后的4°±3°（P≤0.001）。在进行选择性腰椎融合的患者（n=27）中，腰椎凸起平均改善程度明显，从术前的11°±5°，到术后2年时的3°±3°（P≤0.001）。胸廓肋骨凸起的改善程度仅从术前的8°±3°到2年随访时的6°±3°。这种改善不明显（P=0.14）。腰椎凸起的自发性改善率显著高于胸廓肋骨凸起的改善率（49% vs. 26%，P=0.04）。

结论：在选择性融合的患者中，未融合节段较小弧度的轴位矫正的确存在。但是，腰椎选择性融合术后胸廓肋骨凸起的改善并不理想，而选择性胸椎融合术后，腰椎凸起的改善率接近50%。

关键词：青少年特发性脊柱侧凸；选择性融合；轴位矫正。

从1958年Moe首先报道了胸椎侧弯内固定和融合术，未融合腰椎侧弯的自发性矫正后。自此在青少年特发性脊柱侧凸（adolescent idiopathic scoliosis，AIS）中，对存在双弧模式患者的主要弧度进行选择性融合的概念便得以确立。大量的研究报道确定了相应参数，以预测未融合继发弧度的矫正程度。但是，大多数的报道还是集中在冠状面Cobb角的矫正，而没有轴位旋转畸形的矫正。

根据目前我们所知，还没有在脊柱内固定手术后未融合的继发弧度轴位去旋转的报道。而AIS伴有旋转畸形（肋骨凸起或腰椎凸起），是患者和家属在矫形手术时所关心的。这也是之前报道的缺点。因此，本研究的目的就是AIS在选择性脊柱融合术后，评价未融合节段的矫正。胸椎融合术后腰椎凸起的矫正和腰椎融合术后胸廓肋骨凸起的矫正都可于以前评价在选择性融合术后临床畸形的矫正。

材料和方法

收集多个中心的数据，包括AIS患者存在双弧模式
式, 并且进行选择性融合。只有那些在术前测量躯体旋转度或腰椎凸起成角至少在5° (通过侧凸测量仪)的患者才被纳入回顾性研究。换言之, 术前继发弧度畸形无临床意义的患者被排除。在Adam弯腰试验中, 倾侧测量仅被放置于胸廓或腰椎凸起最为明显的地方[14]。

两列患者可用于此回顾性研究——采用选择性胸椎融合手术或者选择性腰椎融合性手术者。选择性胸椎融合性手术（selective thoracic fusion, STF）通过对双弧模式患者采用胸椎内固定融合的方式, 最低位的椎体为L2或以上。选择性腰椎手术通过对双弧模式患者采用腰椎内固定融合的方式, 最高位的椎体为T9或以下。在术前的检查和术后2年的随访中, 融合和未融合的弧度被测量登记。除此以外, 人口统计数据、Lenke分类, 以及术前和术后Cobb角的测量值和原发（融合）弧度和继发（未融合）弧度被登记。

SPSS（SPSS Inc., Chicago, IL）软件被用于统计分析。数据分析采用正态性和方差齐性, α值设定在0.05, 单因素方差分析被用于比较年龄、性别、Risser体征、手术时间、平均失血量、冠状面和轴位的矫正度。Lenke弧度类型和STF、选择性腰椎融合性手术（selective lumbar fusion, SLF）的对比通过Pearson χ²分析。另外, 重复方差分析用于对比术前和术后2年Cobb角的测量值, 以及每一手术组的融合和未融合的弧度变化。

结果

两个手术组（STF组和SLF组）中患者的人口数据见表1。两组中的年龄、性别、Risser体征、手术时间和术中出血量在统计学上没有显著差异（P>0.17）。

尽管如此, Lenke弧度类型和手术人路有显著差异（P<0.001）。在STF组中只包括胸椎后弧度（Lenke弧度类型1-4型），而在SLF组中包括胸腰椎和腰椎后弧度（Lenke弧度类型5-6型）。在STF组中, 9例患者接受了前路融合, 26例接受了前路胸腔镜脊柱融合, 48例接受了后路脊柱融合。在SLF组中, 27例患者接受了前路脊柱融合, 1例接受了后路脊柱融合。

表1 两个手术组数据（STF和SLF）

<table>
<thead>
<tr>
<th></th>
<th>选择性胸椎融合(STF)</th>
<th>选择性腰椎融合(SLF)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者例数</td>
<td>83</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td>年龄</td>
<td>15±2岁</td>
<td>16±2岁</td>
<td>0.18</td>
</tr>
<tr>
<td>性别</td>
<td>女性66例</td>
<td>女性21例</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>男性17例</td>
<td>男性6例</td>
<td></td>
</tr>
<tr>
<td>Lenke分型</td>
<td>Lenke1型69例</td>
<td>Lenke5型23例</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Lenke2型9例</td>
<td>Lenke6型4例</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lenke3型4例</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lenke4型1例</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riser体征</td>
<td>3±2</td>
<td>3±2</td>
<td>0.52</td>
</tr>
<tr>
<td>手术时间（min）</td>
<td>320±130</td>
<td>290±140</td>
<td>0.22</td>
</tr>
<tr>
<td>术中失血量（ml）</td>
<td>800±500</td>
<td>500±300</td>
<td>0.31</td>
</tr>
<tr>
<td>手术方式</td>
<td>OASF 9例</td>
<td>OASF 27例</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>TASF 26例</td>
<td>PSF 1例</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSF 48例</td>
<td></td>
<td></td>
</tr>
<tr>
<td>腰椎成形术</td>
<td>是29例</td>
<td>是5例</td>
<td>0.17</td>
</tr>
<tr>
<td>否54例</td>
<td>22例</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

在术前和术后2年胸椎凸起部位躯体的旋转度分别为8°±3°和6°±3°, 内固定腰椎/胸腰椎节段的平均改善率为73%。术前和术后2年胸椎凸起角为31°±12°和18°±9°, 内固定胸椎节段的平均改善率为41%。内固定的原发弧度和内固定继发弧度在术后2年有统计学差异（P<0.001）。

在术前和术后腰椎凸起部位躯体旋转的角度（通过侧凸测量仪测量）为15°±5°和7°±4°, 平均改善率为51% (P<0.001)。术前和术后2年内固定节段腰椎凸起的躯体旋转度为9°±3°和4°±3°, 平均改善率为49% (P<0.001)（表2）。83例患者中有29例（35%）在STF手术的过程中进行了胸廓成形术。在术后2年, 胸廓肋骨凸起的数值在胸廓成形术和未接受手术的患者中是一致的; 胸廓肋骨凸起的变化率没有显著性差异（接收手术者为51%, 未手术者为49%; P=0.82）。

SLF组中27例患者内固定的最高节段为T9或以下, 平均随访时间2.3±0.5年。在SLF组患者中有23例为Lenke5C型, 4例为Lenke6C型。术前和术后2年胸椎凸起角为48°±10°和13°±9°, 内固定腰椎/胸腰椎节段的平均改善率为73%。术前和术后2年胸椎凸起角为31°±12°和18°±9°, 内固定胸椎节段的平均改善率为41%。内固定的原发弧度和内固定继发弧度在术后2年有统计学差异（P<0.001）。

在术前和术后腰椎凸起部位躯体旋转的角度（通过侧凸测量仪测量）为11°±5°和3°±3°, 同时冠状面的平均改善率为66% (P<0.001)。术前和术后2年胸廊肋骨凸起部位躯体的旋转度分别为8°±3°和6°±3°, 平均改善率为26%, 这一改变无统计学差异 (P=0.14)（表2）。27例患者中有5例（19%）在SLF术后同时进行了胸廓成形术。但是在进行胸廓成形术和未进行成形术的患者中, 术后2年平均侧凸改善率与未内固定节段肋骨凸起的平均改善率均无差异（分别为6°±3°和26%) (P=0.93)。

尽管未内固定节段的继发弧度冠状面（Cobb角）改善率类似（在STF组中, 腰椎冠状面侧凸的改善率为53%, 在SLF组中, 胸椎冠状面侧凸的自理性改善率为41%, P=0.12), 但在STF组中, 其未融合腰椎凸起的轴
位自发性旋转改善率（49%）显著高于SLF中未融合胸廓肋骨突起的轴位自发性旋转改善率（26%）（P = 0.04）。

■ 讨论

在AIS患者进行选择性融合术之后，继发弧度冠状面自发性的改善已经得到了确认。其中大部分报道强调的都是冠状面的改善，而没有提及肋骨或是腰椎凸起的轴位自发性旋转的改善。这种只强调冠状面上的改善并没有完全反映出手术对于患者的帮助程度，躯体外形要通过对肋骨凸起的轴位矫形得以改善，这对患者来说也是非常重要的。另外，在AIS患者中进行选择性融合术后，可以用来提供未融合节段继发弧度旋转畸形的自发改善程度预期值。这些数据可以为患者和患者家属提供术后继发弧度的改善程度的预期值，对于一些病例，可以帮助决定对于继发弧度患者是否进行继发弧度的融合手术。

对于冠状面的矫形率，本研究结果与之前报道的选择性胸椎融合（内固定胸弯的Cobb角的改善率65% vs. 38%~68%，未固定胸弯的自发性Cobb角的改善率为53% vs. 38%~56%）[12,13,15,16]和选择性腰椎融合（内固定腰弯的Cobb角的改善率73% vs. 54%~83%；未固定腰弯的自发性Cobb角的改善率为41% vs. 19%~42%）[4,8,10,11,16]结果相一致。所以，本研究进一步证实了选择性融合术后未融合节段在冠状面上的自发代偿性矫正。另外，本研究结果也很好地比较了之前报道的融合节段旋转的矫形率（在STF中，肋骨突起矫形51% vs. 22%~70%，SLF中腰椎突起的矫形率66%vs. 51%~87%）[4,8,11,16]。

另外，本研究重点证实了对于选择性融合手术之后，在未融合节段，并不只存在冠状面上的自发代偿性矫形，还有轴位的去旋转。在选择性胸椎融合术中，内固定节段肋骨凸起的改善率与未内固定节段腰椎凸起轴面的改善率相当（分别为51%和49%）。在选择性腰椎融合术中，未融合节段轴位的代偿性改善率显著低于融合节段轴位改善的程度（分别为26%和66%）。因此，在选择性腰椎融合术中从融合节段传导到未融合节段的轴位去旋转程度显著低于选择性胸椎融合术中从融合节段传导到未融合节段的轴位去旋转程度。

在选择性胸椎融合术中，内固定节段肋骨凸起的改善率与未内固定节段腰椎凸起的改善率（分别为51%和49%）。在选择性腰椎融合术中，未固定胸弯的自发性Cobb角的改善率为41% vs. 26%~42%[12,13]。因此，在选择性腰椎融合术中从融合节段传导到未融合节段的轴位去旋转程度显著低于选择性胸椎融合术中从融合节段传导到未融合节段的轴位去旋转程度。

这种偏差考虑与胸椎、肋骨较腰椎僵硬有关。在选择性胸椎融合的病例中，内固定节段肋骨凸起的改善率与未内固定节段腰椎凸起的改善率相当（分别为51%和49%）。在选择性腰椎融合术中，未融合胸椎节段轴位的代偿性改善率显著低于融合节段轴位改善的程度（分别为26%和66%）。因此，在选择性腰椎融合术中从融合节段传导到未融合节段的轴位去旋转程度显著低于选择性胸椎融合术中从融合节段传导到未融合节段的轴位去旋转程度。

这种偏差考虑与胸椎、肋骨较腰椎僵硬有关。在选择性胸椎融合的病例中，内固定节段肋骨凸起的改善率与未内固定节段腰椎凸起的改善率相当（分别为51%和49%）。在选择性腰椎融合术中，未融合胸椎节段轴位的代偿性改善率显著低于融合节段轴位改善的程度（分别为26%和66%）。因此，在选择性腰椎融合术中从融合节段传导到未融合节段的轴位去旋转程度显著低于选择性胸椎融合术中从融合节段传导到未融合节段的轴位去旋转程度。

入选在选择性融合的同时进行胸廓成形术的患者可能给我们的结果带来一定的偏倚。在STF病例中，胸廓

<table>
<thead>
<tr>
<th>患者例数</th>
<th>术前</th>
<th>术后2年</th>
<th>矫正程度</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF 83</td>
<td>52 ± 12˚</td>
<td>18 ± 9˚</td>
<td>65%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>腰椎Cobb角</td>
<td>33 ± 10˚</td>
<td>16 ± 9˚</td>
<td>53%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>肋骨凸起</td>
<td>15 ± 5˚</td>
<td>7 ± 4˚</td>
<td>51%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>腰椎凸起</td>
<td>9 ± 3˚</td>
<td>4 ± 3˚</td>
<td>49%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎后凸</td>
<td>21 ± 12˚</td>
<td>21 ± 10˚</td>
<td>51%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>腰椎前凸</td>
<td>61 ± 12˚</td>
<td>60 ± 11˚</td>
<td>66%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎Cobb角</td>
<td>31 ± 12˚</td>
<td>18 ± 9˚</td>
<td>61%</td>
<td>0.14</td>
</tr>
<tr>
<td>腰椎Cobb角</td>
<td>48 ± 10˚</td>
<td>13 ± 9˚</td>
<td>73%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>肋骨凸起</td>
<td>6 ± 3˚</td>
<td>6 ± 3˚</td>
<td>26%</td>
<td>0.14</td>
</tr>
<tr>
<td>腰椎凸起</td>
<td>11 ± 5˚</td>
<td>3 ± 3˚</td>
<td>66%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎后凸</td>
<td>24 ± 13˚</td>
<td>26 ± 9˚</td>
<td>49%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎前凸</td>
<td>58 ± 12˚</td>
<td>60 ± 10˚</td>
<td>66%</td>
<td>≤0.001</td>
</tr>
</tbody>
</table>

SLF 27

<table>
<thead>
<tr>
<th></th>
<th>术前</th>
<th>术后2年</th>
<th>矫正程度</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>腰椎Cobb角</td>
<td>31 ± 12˚</td>
<td>18 ± 9˚</td>
<td>61%</td>
<td>0.14</td>
</tr>
<tr>
<td>腰椎Cobb角</td>
<td>48 ± 10˚</td>
<td>13 ± 9˚</td>
<td>73%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>肋骨凸起</td>
<td>6 ± 3˚</td>
<td>6 ± 3˚</td>
<td>26%</td>
<td>0.14</td>
</tr>
<tr>
<td>腰椎凸起</td>
<td>11 ± 5˚</td>
<td>3 ± 3˚</td>
<td>66%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎后凸</td>
<td>24 ± 13˚</td>
<td>26 ± 9˚</td>
<td>49%</td>
<td>≤0.001</td>
</tr>
<tr>
<td>胸椎前凸</td>
<td>58 ± 12˚</td>
<td>60 ± 10˚</td>
<td>66%</td>
<td>≤0.001</td>
</tr>
</tbody>
</table>
代偿性弧度自发性去旋转 • Ritzman et al

内固定并且成形的节段对未融合的腰椎节段在冠状面或是轴位的矫形上可能并没有生物力学的影响；所以未排除这些病例。有趣的是，STF病例中，进行胸廓成形术的患者相比没有进行胸廓成形术的患者，肋骨突起畸形的改善程度没有显著提高(51% vs. 49%, P=0.82)。相应地，在SLF组中5例患者因为没有差别而未被排除在本研究之外,因此没有传导偏倚。由此可见，胸廓成形术（一种以矫形美容为主要目的且有较高并发症发生率的手术）未达到预期的轴位肋骨凸起旋转畸形的改善程度，使人对其价值提出了疑问。

■ 结论

对AIS患者的两个侧凸进行选择性融合术后，未内固定节段继发弧度在冠状面和轴位都能够自发性矫正。STF中胸椎节段两个面上通过内固定节段传导到未内固定节段的代偿性矫正，比SLF轴位两个面上通过腰椎内固定节段传导到未内固定节段的代偿性侧弯明显。在选择性胸椎融合的病例中，未内固定腰椎侧弯在冠状面(Cobb角)和轴面（肋骨突起）的改善率分别为53%和49%。在选择性腰椎融合的病例中，未内固定胸椎侧弯得到了较少的矫正，其在冠状面(Cobb角)和轴面（肋骨突起）的改善率分别为41%和26%。

■ 要点

● 对AIS患者两个侧凸进行选择性融合术后，未内固定节段继发弧度在冠状面和轴位都能够自发性矫正。

● 选择性胸椎融合手术可使近50%的临床腰椎凸起得到自发性矫正。

● 选择性胸椎融合手术不能得到预期的胸廓肋骨凸起的矫正。

● 对AIS患者进行选择性融合术后，可以用来提供未融合节段继发弧度旋转畸形的自发性改善程度预测值。这些数据可以为患者和患者家属提供术后继发弧度的改善程度的预期值，对于一些病例，可以帮助决定对于继发弧度患者是否进行继发弧度的融合手术。

参考文献

idiopathic scoliosis: is rib-hump reassertion a mechanical problem of
the thoracic rib cage rather than an effect of relative anterior spinal

19. Kuklo T, Potter B, Lenke L. Vertebral rotation and thoracic torsion in
adolescent idiopathic scoliosis: what is the best radiographic correlate? *J

20. Aaro S, Dahlborn M. Estimation of vertebral rotation and the spinal
and rib cage deformity in scoliosis by computer tomography. *Spine*

in adolescent idiopathic scoliosis using three-dimensional magnetereic

（中国医科大学第一附属医院 屠冠军）
中华国际脊柱论坛
China International Spine Symposium, 简称CISS

是中心特别为加强中国脊柱外科界与海外学术界交流和合作而设立的一个海外会议。会议以发表研究成果，探讨学术发展方向为主题，聚会集邀请国内讲师和国外客座讲师。

中华脊柱教育中心
China Spine Education Center，简称CSEC

成立于2004年3月12日，是由美敦力脊柱业务部门独家赞助的非赢利性学术组织。中心邀请来自全球的脊柱外科专家组成讲师团，通过一系列的继续教育项目，促进中华脊柱外科的发展。

愿景(Vision):
To become the No. 1 corporate university in China Medical Industry

目标:
通过一系列的继续教育项目，提供专业的培训课程，以促进中华脊柱外科事业的发展，扩大中国在这一技术领域的国际影响力。

CSEC学院介绍
China Spine Education Center

- Registered in Hong Kong
- Affiliated to MSD China
- Provide education and training relating to spine to Chinese surgeons, medical staffs and patients through various means.
- Establish training site in various countries and regions.
- Faculty members of CSEC are from all over the world.