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OCCUPATIONAL HEALTH/ERGONOMICS
Lumbar Spine Paraspinal Muscle and
Intervertebral Disc Height Changes in Astronauts
After Long-Duration Spaceflight on the
International Space Station
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Study Design. Prospective case series.
Objective. Evaluate lumbar paraspinal muscle (PSM) cross-

sectional area and intervertebral disc (IVD) height changes

induced by a 6-month space mission on the International Space

Station. The long-term objective of this project is to promote

spine health and prevent spinal injury during space missions and

here on Earth.
Summary of Background Data. National Aeronautics and

Space Administration (NASA) crewmembers have a 4.3 times

higher risk of herniated IVDs, compared with the general and

military aviator populations. The highest risk occurs during the

first year after a mission. Microgravity exposure during long-

duration spaceflights results in approximately 5 cm lengthening

of body height, spinal pain, and skeletal deconditioning. How

the PSMs and IVDs respond during spaceflight is not well

described.
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Materials and Methods. Six NASA crewmembers were

imaged supine with a 3 Tesla magnetic resonance imaging.

Imaging was conducted preflight, immediately postflight, and

then 33 to 67 days after landing. Functional cross-sectional area

(FCSA) measurements of the PSMs were performed at the L3-4

level. FCSA was measured by grayscale thresholding within the

posterior lumbar extensors to isolate lean muscle on T2-

weighted scans. IVD heights were measured at the anterior,

middle, and posterior sections of all lumbar levels. Repeated

measures analysis of variance was used to determine signifi-

cance at P<0.05, followed by post-hoc testing.
Results. Paraspinal lean muscle mass, as indicated by the

FCSA, decreased from 86% of the total PSM cross-sectional area

down to 72%, immediately after the mission. Recovery of 68%

of the postflight loss occurred during the next 6 weeks, still

leaving a significantly lower lean muscle fractional content

compared with preflight values. In contrast, lumbar IVD heights

were not appreciably different at any time point.
Conclusion. The data reveal lumbar spine PSM atrophy after

long-duration spaceflight. Some FCSA recovery was seen with

46 days postflight in a terrestrial environment, but it remained

incomplete compared with preflight levels.
Key words: aerospace medicine, atrophy, back pain,
immobilization, intervertebral disc, magnetic resonance imaging,
muscles, paraspinal muscles, spine, weightlessness.
Level of Evidence: 4
Spine 2016;41:xxx-xxx
T
he lumbar paraspinal muscles (PSM) provide pos-
tural stability, enabling gait and supporting upper
extremity movements.1,2 They are critical to func-

tion in a gravitational environment. In particular, these
muscles facilitate vertebral motion, and protect articular
structures, discs, and ligaments from excessive strain and
injury.3 Atrophy of these muscles is evidenced by altered fat
content, cross-sectional area (CSA), and higher proportions
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of type II fast-twitch fibers,4,5 and is strongly associated
with low back pain on Earth.6,7 How these muscles function
and respond during space flight is, however, not
well described.

With microgravity exposure in space, several spine-
related issues are observed among crewmembers.8 The torso
lengthens 4 to 6 cm, approximately 2 to 3 times the normal
diurnal increase (1–2 cm) on Earth.9,10 This reportedly
occurs because of spinal unloading, flattening of spinal
curvature, loss of paravertebral muscle tone, and vertebral
disc degeneration.11,12 Flight medical data indicate that
more than half of the US astronauts report spine pain during
their mission.13–15 Although in space, astronauts report that
a lumbar flexed, ‘‘fetal tuck’’ position to stretch is the most
effective way of alleviating back pain.14 The back pain is
described with a moderate to severe level of intensity for
14% to 28% percent of the US astronauts. Shuttle crew-
members described pain lasting for 15% to 100% of their
mission. The location of pain is reported most frequently in
the following anatomic regions: 50% low back, 11% mid-
back, 11% neck, and 1% chest. Even after their return to
Earth, approximately 40% of crewmembers report spine
pain.16 Another indication of lumbar pain is vertebral
hypomobility from guarding,17 and preliminary data
indicate such spinal stiffness is seen with prolonged space
flight.18,19

Even with an exercise protocol in place during prolonged
space missions, significantly decreased muscle size is seen at
multiple sites in the body, including the lumbar paraspi-
nals.20 The exercise protocols have evolved over time, but
traditionally they have not specifically focused on core
strengthening.21 LeBlanc and coworkers describe an expo-
nential recovery of preflight muscle size after Mir missions,
and the recovery is complete within 30 to 60 days. These
measurements were made by manually tracing the outline of
muscle cross-sections seen on 1.5 Tesla magnetic resonance
images of 16 crew members. It is unknown whether fatty
replacement, fluid redistribution, or actual lean muscle mass
changes occur, such as that observed in patients or ground-
based bed rest simulations of microgravity.22,23

Lastly, a concerning risk of intervertebral disc (IVD)
herniation is seen postflight. The incidence of herniated
nucleus pulposus is reported as 4.3 times higher in the US
Astronaut Corps compared to matched aviator control
populations on Earth.11 The highest risk period for disc
herniation appears in the first year after return to Earth,
with the majority reported within the first month of landing.
It is unknown how medical staff surveillance of the astro-
nauts versus control populations, and different behavioral
decisions regarding medical care seeking and reporting by
crewmembers before versus after a mission might play into
the observations. It, however, does strongly suggest that
structural changes in the spine associated with space adap-
tation result in deleterious effects occurring with the rein-
troduction of the gravity environment. Moreover, the
consequence of disc herniation may affect an astronaut’s
ability to return to work on Earth or conduct work upon
2 www.spinejournal.com
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arriving at a planetary destination such as Mars after a long
space flight.

The immediate purpose of this research is to evaluate
lumbar PSM CSA and IVD heights following a 6-month
International Space Station (ISS) mission and a 33- to 67-day
postflight recovery period. The goals are to understand the
factors involved in lumbar spine strength and back pain in
crewmembers during a long mission and after increased g-
loads of landing and readaptation to Earth. This could
provide helpful physiological information to support a
manned mission to Mars. On Earth, this information could
help our understanding of spinal atrophy and degeneration
due to inactivity, and potential issues involved with back-
pack use of military personnel, and first responders.

MATERIALS AND METHODS
Institutional research board approval was obtained from the
National Aeronautics and Space Administration (NASA)
and the University of California, San Diego. Six ISS crew-
members volunteered for the study, 1 woman and 5 men.
The range of crewmember ages spanned 46 to 55 years,
height 168 to 183 cm, and body mass 60 to 93 kg. The
mission duration on the ISS ranged from 117 to 213 days.
This project represents 4 years of active data collection,
through 2016.

Supine lumbar spine magnetic resonance imaging (MRI)
scans were conducted preflight, immediate postflight, and at
least 30 days postflight recovery after an ISS mission
(Figure 1 A, B). Imaging took about 80 minutes, and was
performed in the morning, using a Siemens Magnetom Verio
3T system at a University of Texas Medical Branch facility
outside Houston, TX. Preflight imaging was performed on
average 214 days before launch. Although on the ISS, the
astronauts engaged in 2 to 3 hours of daily exercise with a
treadmill, stationary cycle, and resistive strength training of
the large muscle groups.21,24–26 After landing in Kazakh-
stan, the ‘‘immediate’’ postflight imaging was performed
within 1 to 2 days, in Houston. Landing details are described
elsewhere.27 The astronauts completed typical post-flight
astronaut strength, conditioning, and rehabilitation exercise
and activities,26 including a brief trip back to Russia, and
return to Houston, TX where they were imaged again. These
‘‘Recovery’’ period images were performed an average of 46
days (range 33–67 days) after landing. The imaging time
points are summarized in Table 1.

Functional cross-sectional area (FCSA) measurements of
the lumbar PSMs were obtained using the T2-weighted MRI
scans. We elected to focus on the L3/4 vertebral level, based
on the relative ease of identifying muscle boundaries as
compared to lower vertebral levels. The FCSA measure-
ments involved an image-analysis thresholding technique to
estimate lean muscle mass. The technical details are reported
elsewhere.1,28–31 Briefly, the lumbar PSMs (multifidus, erec-
tor spinae, quadratus lumborum, and psoas) were identified
and analyzed using Fiji imaging software (National Insti-
tutes of Health,32 Figure 2A). Total PSM CSA was defined
as the sum total of the CSAs obtained from the eight PSMs
Month 2016
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Pre-Flight Post-Flight Post-Flight Recovery

B

Figure 1. Characteristic pre-, postflight, and recovery lumbar spine MR images (A) L1-S1 sagittal and (B) L3/4 axial T2 sequences.
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(combining right and left). Functional PSM CSA was
measured using gray-scale thresholding to analyze those
regions of the muscle cross-sections corresponding to dark,
lean muscle mass. The analysis was conducted by one
individual (R.M.H.). Our control studies showed that repeat
measurements done by an individual and by several indi-
viduals were reliable and reproducible, with an intraclass
correlation coefficient of 0.99, consistent with the litera-
ture.28,29 Statistical analysis was conducted using one-way,
repeated measures analysis of variance (ANOVA) to estab-
lish significance, defined as P<0.05, followed by post-hoc
testing with the Newman-Keuls multiple comparison test33

with alpha¼0.05, using GraphPad Prism (version 5.04,
GraphPad Software, Inc., La Jolla, CA) software.
TABLE 1. Imaging Schedule of Crewmembers

Subject Preflight MRI

No. Days Before Launch

1 �132

2 �246

3 �245

4 �224

5 �222

6 �30

MRI indicates magnetic resonance imaging.

Spine
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Lastly, lumbar IVD heights were measured at the
anterior, middle, and posterior sections from the L1-2 to
L5-S1 disc levels (Figure 2B). The fast spin echo T2 images
were obtained at the midsagittal plane,34 with slice thickness
4 mm, field of view 200, 192�320 image matrix, voxel size
1�0.6�4 mm, and NEX 2. For each subject, the disc
height at a given lumbar intervertebral level was defined
as the average of measurements made in the anterior,
middle, and posterior locations along the disc, modified
from the Dabbs method.35 Change in the average disc height
was calculated at postflight (post-preflight), recovery
(recovery-postflight), and overall change from preflight to
recovery (recovery-preflight). This measurement has an
uncertainty with inter- and intraobserver standard
Postflight MRI Postflight Recovery MRI

Days After Landing Days After Landing

þ2 þ41

þ2 þ37

þ1 þ33

þ2 þ34

þ1 þ63

þ4 þ67

www.spinejournal.com 3

horized reproduction of this article is prohibited.



CE: A.U.; SPINE/152831; Total nos of Pages: 9;

SPINE 152831

Figure 2. Characteristic location of (A) lumbar
paraspinal muscles identified for functional cross-
sectional area (FCSA) lean muscle area measure-
ment on axial images at the L3-L4 level, and (B)
intervertebral disc (IVD) height measurement on
sagittal images (anterior, middle, and posterior).

OCCUPATIONAL HEALTH/ERGONOMICS Lumbar Spine PSM and IVD Height Changes in Astronauts � Chang et al
deviations of 0.2 and 0.3 mm, respectively.36 Our group has
used the technique to measure changes in lumbar IVD
heights with Earth-bound subjects in unloaded bedrest,34

and loaded backpack studies.36,37

RESULTS
Lumbar paraspinal FCSA decreased by 19% on average
from a preflight value of 8737�1758 mm2 (avg� standard
deviation) down to a postflight value of 7049�1822 mm2.
Later, there was a change in FCSA up to a recovery value of
8195�1900 mm2. ANOVA testing indicates a significant
difference in FCSA measured at the three time points, with F
ratio 23.39, R2 0.82, and P¼0.0002. Post-hoc testing
indicates the FCSA changed significantly from pre- to post-
flight, and from postflight to postflight recovery. The FCSA
data at the recovery time point were less than the preflight
values, representing a 68% recovery of the postflight loss, a
difference not significantly different as determined by post-
hoc testing. In comparison, the total lumbar paraspinal CSA
(that encompass the unthresholded manual outlines, and
therefore includes both lean muscle and nonlean muscle
components) followed a similar trend at the three time
points, but with nonsignificant changes (F ratio 1.44, R2

0.22, P¼0.2832, Table 2).
Expressed as a percentage of the total lumbar CSA, the

relative proportion of lumbar lean muscle FCSA decreased
from preflight to postflight by 14 percentage points from
86%�5% down to 72�7%. The fraction of lumbar
muscle FCSA recovered nine percentage points during the
next 6 weeks to an average of 81%�4%. ANOVA testing
indicates a significant difference in percentage FCSA
measured at the three time points, with F ratio 22.25, R2

0.82, and P¼0.0002. Post-hoc testing indicates the FCSA
changed significantly from pre- to postflight, and from post-
flight to postflight recovery. This resulted in a significantly
lower lean muscle fractional content at recovery compared
with the preflight values (Figure 3).

Among the six crewmembers studied, average disc height
did not change in the lumbar spine. There was no consistent
pattern before and after the mission (Table 3). There was
considerable disc height variability from crewmember to
4 www.spinejournal.com
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crewmember, over various lumbar spine levels, and along
anterior-middle-posterior locations of the disc.

DISCUSSION
The present study showed reductions in total CSA with long-
duration space flight, but even more dramatic reductions in
functional CSA, a proxy for lean muscle mass. At 6 weeks
postmission, the FCSA and CSA trended toward preflight
levels. After the mission, the lumbar paraspinal extensors
recovered 68% of the loss after approximately 46 days back
on Earth. These ISS data are comparable to previous long-
duration Mir data obtained approximately 20 years ago,20

where intrinsic back muscle total CSA decreased to 84% of
preflight values, and psoas CSA decreased to 96%. Direct
comparisons to that study are, however, difficult to make
due to several factors.

We had six crewmembers, whereas LeBlanc and cow-
orkers report on 16 crewmembers. We used one 3 Tesla
MRI scanner in Houston operated by a single team of
technicians, whereas LeBlanc et al used three 1.5 Tesla
scanners at two centers (Moscow, Russia, and Houston,
TX). During the missions, different exercise countermeas-
ures were used on board more recent ISS compared with
previous Mir flights.38 On Mir specifically, there were no
significant resistance exercises for strength. LeBlanc and
coworkers report slightly more temporal variability for scan
times after landing. For example, five of the six crewmem-
bers were scanned between day 1 and 2 after landing in the
present study, whereas their first postflight measurements
occurred on landing day itself or up to 4 days after landing.
We focused on the L3/4 lumbar level, whereas LeBlanc and
coworkers made muscle volume calculations using an
unspecified region of the lumbar spine. We elected not to
measure the lower lumbar levels due to the greater difficulty
in identifying clear muscle boundaries in a region that
typically has a greater degree of fatty atrophy/intermuscular
fascial connections (e.g., lumbar intermuscular aponeurosis,
lumbosacral ligaments) in the multifidi/erector spinae
muscles, and a fanning/thinning of the psoas and erector
spinae muscles as they traverse normally away from the
lumbar spine.39 Lastly, we evaluated both total and
Month 2016
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TABLE 2. Lumbar Paraspinal Muscle Cross-sectional Area Data

Lumbar Cross-sectional Area (CSA) CSA Normalized to Preflight Baseline

Subject No. Pre- (mm2) Post- (mm2) Post-Rec (mm2) Pre- Post- Post-Rec

1 10,175 10,811 10,372 1 1.06 1.02

2 6573 5326 5766 1 0.81 0.88

3 10,371 10,174 11,026 1 0.98 1.06

4 11,425 11,309 11,499 1 0.99 1.01

5 10,119 9936 10,118 1 0.98 1.00

6 12,069 11,060 11,659 1 0.92 0.97

Average 10,122 9769 10,073 0.96 0.99

Std dev 1905 2239 2195 0.09 0.06

Subject No.
Lumbar Functional Cross-sectional Area (FCSA) fCSA Normalized to Preflight Baseline

Pre- (mm2) Post- (mm2) Post-Rec (mm2) Pre- Post- Post-Rec

1 9497 7559 8577 1 0.80 0.90

2 5371 3464 4399 1 0.64 0.82

3 8855 8435 9517 1 0.95 1.07

4 10,338 8217 9283 1 0.79 0.90

5 8647 7484 8535 1 0.87 0.99

6 9716 7135 8859 1 0.73 0.91

Average 8737 7049 8195 0.80 0.93

Std dev 1758 1822 1900 0.11 0.09

Subject No.

Lumbar FCSA Percentage (FCSA/CSA�100) Lumbar FCSA Percentage Normalized to Preflight
Baseline

Pre- (%) Post- (%) Post-Rec (%) Pre- Post- Post-Rec

1 93 70 83 1 0.75 0.89

2 82 65 76 1 0.80 0.93

3 85 83 86 1 0.97 1.01

4 90 73 81 1 0.80 0.89

5 85 75 84 1 0.88 0.99

6 81 65 76 1 0.80 0.94

Average 86 72 81 0.83 0.94

Std dev 5 7 4 0.08 0.05

Std dev indicates standard deviation.

OCCUPATIONAL HEALTH/ERGONOMICS Lumbar Spine PSM and IVD Height Changes in Astronauts � Chang et al
functional CSA measurements. This provides insight into
lean-muscle mass changes separated from the effects of
water retention or fatty replacement.
Figure 3. Functional cross-sectional area (FCSA) as a percentage of
total cross-sectional area (CSA) in the lumbar paraspinal muscles,
n¼6 crewmembers.

Spine
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In contrast to PSM data, individual disc height changes
in the lumbar spine were small and demonstrated no
consistent changes across time points. Specifically, disc
height increases were not seen in a significant or consistent
fashion postflight. We continue to review these data in
several additional ways, including total lumbar disc height
(measured by summing disc heights from every level) and
total lumbar length between the L1 and the L5 vertebral
bodies,40 and also by making comparisons with lumbar
lordosis measurements, MRI T2 water mapping tech-
niques41 in the discs,19 and a separate data set we col-
lected on the subjects using upright standing MRI data.36

So far, our data are compatible to previous lumbar disc
height and lumbar length measurements after short-
duration space flight,40 and preliminary data from in-
flight ultrasound studies of cervical and lumbar disc
heights, which also do not indicate significant disc height
increases or swelling.42
www.spinejournal.com 5
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TABLE 3. ChangeinLumbarDiscHeights(Average
Change� Standard Deviation), in mm

Post-Pre-
flight

Recovery-
Postflight

Recovery-
Preflight

L1-L2 �0.1�1.2 0.0�1.0 �0.1�0.6

L2-L3 0.0�0.4 �0.1�0.5 �0.1�0.5

L3-L4 �0.8�1.5 0.1�0.9 �0.7�1.0

L4-L5 �0.3�0.5 0.2�0.9 �0.2�1.0

L5-S1 0.1�1.0 �0.3�0.9 �0.3�0.6

Changes at postflight (post-preflight), recovery (recovery-postflight), and
overall change from pre-flight to recovery (recovery-preflight).

OCCUPATIONAL HEALTH/ERGONOMICS Lumbar Spine PSM and IVD Height Changes in Astronauts � Chang et al
These measurements run counter to previous hypotheses
about the effects of microgravity on disc swelling,11,43 and
suggest that the torso lengthening observed in crewmem-
bers 12,44 may be due to factors other than swelling of the
IVDs. Specifically, postural straightening (i.e., a flattening
of spinal lumbar lordosis and thoracic kyphosis into a
‘‘neutral body posture’’ in microgravity) is an important
factor.12,19 Our sample size is, however, presently small for
the study of IVD heights, and we have no in-flight images.
Further spine analysis with additional crewmembers and in-
flight ultrasound imaging will be forthcoming.

Back pain is a part of life. Approximately two-thirds of
the adult population will experience low back pain and a
specific pathologic anatomical diagnosis is made in only
approximately 15% of cases.45 Given that, what are the
implications of lowered PSM functional CSA? Back pain
patients do demonstrate reduced PSM CSA.7 The positive
predictive value of CSA on the development of future low
back pain is, however, controversial, and it has not yet been
established as a strong independent risk factor.46,47 This
may be similar to other reported low back pain risk factors
(such as physical demands at work, job satisfaction, bodily
vibration, smoking, alcohol consumption, lumbar flexi-
bility, etc.), where reliable predictive conclusions from the
literature are difficult to make for any one person due to the
many intercorrelated and confounding parameters, and the
fact low back pain is common even in people without such
risks. Back weakness is one known risk factor for low back
pain45,48 and our laboratory is analyzing Biering-Sorensen
back extension endurance data to help characterize a struc-
ture-function relationship among the crewmembers. Even
so, muscle endurance and strength depend not only on CSA,
but also on many other factors such as muscle contractility,
metabolism, and fiber-type atrophy,49,50 and neuromuscu-
lar recruitment, coordination, fatigue mechanisms,51,52

pain, and psychosocial factors.53

Astronaut exercise programs currently emphasize the
maintenance of bone mineral density, aerobic/anaerobic
capacity, and muscle strength/power (focused on the large
muscles of the proximal hips and shoulders) and endur-
ance.21 Preflight, the exercise program involves a mix of
cardio aerobic training, functional training for activities
performed in daily life, resistive weight-training (e.g., squats
6 www.spinejournal.com
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and deadlifts), and familiarization of in-flight exercises. In
mission there is treadmill training, cycle ergometer, and
resistive training (squats, deadlifts, bench/shoulder press,
rows). Postflight there is cardio, resistive weight training,
and functional exercise focused on balance, proprioception,
agility, coordination, and power.26 These routinized exer-
cise programs are closely monitored by NASA Astronaut
Strength, Conditioning and Rehabilitation and medical
staff. With such a steady-state, maintenance program in
place preflight, we do not believe that significant lumbar
deconditioning or strengthening occurs between the pre-
flight images and the flight itself. We are, however, unable to
substantiate this belief because mission logistics preclude
testing close to the actual launch date.

Our lumbar spine data identify a specific departure from
the terrestrial, baseline anatomy of astronauts. It further
suggests that an exercise countermeasure is needed to focus
on the lumbar PSMs. Low load, lumbar core stabilization
exercises are efficacious for back pain patients,54 decondi-
tioned1,55 and healthy56 adults on Earth, specifically
improving PSM CSA atrophy and strength,4,57–59 and
acute60,61 and chronic57,62,63 low back pain. Such core-
strengthening exercises specifically involve isometric exer-
cises or lumbar extensor training. Another promising exer-
cise countermeasure for low back pain is yoga,64 which
might be particularly effective in addressing spaceflight-
associated lumbar stiffness and hypomobility.15,19,65 Exist-
ing exercise interventions in microgravity that target other
muscle groups are effective in addressing atrophy.38

Whether new exercise countermeasures can prevent in-flight
PSM atrophy, improve spinal pain and function, shorten
recovery time, and how such exercise might be performed in
a micro-gravity environment with available exercise equip-
ment need further study.
ho
Key Points
riz
Lumbar spine MRI data were obtained from six
astronauts before, after, and approximately 46
days after a 6-month mission on board the ISS.

Functional CSA of the lumbar PSMs decreased
significantly by 14 percentage points during long-
duration spaceflight (P¼ 0.005) and recovered
68% of the loss by postflight day 46.

Lumbar IVD heights were essentially unchanged
after space flight.

Such results give insight into back pain and IVD
risks, suggesting possible countermeasures
targeted to the lumbar PSMs while in-flight and
ed
during the preflight and postlanding periods.
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