Secondary Logo

Rotstein Dalia; Parodo, Jean; Taneja, Ravi; Marshall, John C.
Clinical Investigations: PDF Only


Neutrophil-mediated inflammation is terminated through the programmed cell death or apoptosis of the neutrophil, a process that can be inhibited by soluble mediators released during an inflammatory response. It has been reported, however, that the phagocytosis of intact bacteria can accelerate apoptosis. We evaluated the effects of the phagocytosis of a common nosocomial pathogen, Candida albicans, on the expression of apoptosis. Phagocytosis of killed Candida induced a dose-dependent increase in the apoptosis of normal neutrophils after 18 h of in vitro culture, from 40.7 ± 9.1% to 81.7 ± 4.5%, while supernatants from neutrophil: Candida co-cultures actually inhibited apoptosis. Induction of apoptosis was not dependent on phagocytosis, since opsonization of yeast with serum failed to increase apoptosis, while inhibition of phagocytosis with latrunculin B resulted in a slightly increased apoptotic rate. Increased apoptosis induced by Candida was associated with increased activity of the membrane-associated apoptotic enzyme, caspase 8, and with increased expression of the active form of the key executioner caspase, caspase 3. Increased apoptosis was associated with depletion of intracellular glutathione (GSH), and could be inhibited by the addition of exogenous GSH. These data demonstrate an important physiologic role for host-pathogen interactions in the resolution of inflammation and suggest that the response to an invading pathogen is an important stimulus to the restoration of normal immunologic homeostasis.

Presented at the 20th annual meeting of the Surgical Infection Society, April 27-29, 2000, Providence, RI.

Address reprint requests to John C. Marshall, MD, Eaton North 9-234, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada, M5G 2C4.

©2000The Shock Society