Secondary Logo

Institutional members access full text with Ovid®

Share this article on:

STRUCTURAL ANALYSIS AND COMPREHENSIVE SURGICAL OUTCOMES OF THE SUTURELESS INTRASCLERAL FIXATION OF SECONDARY INTRAOCULAR LENSES IN HUMAN EYES

Todorich, Bozho, MD, PhD*; Stem, Maxwell S., MD*; Kooragayala, Keshav, MD*; Thanos, Aristomenis, MD*; Faia, Lisa J., MD*; Williams, George A., MD*; Hassan, Tarek S., MD*; Woodward, Maria A., MD, MS; Wolfe, Jeremy D., MD, MS*

doi: 10.1097/IAE.0000000000001941
Original Study

Purpose: To describe surgical outcomes and structural characteristics of intraocular lenses (IOLs) implanted with transconjunctival sutureless intrascleral (SIS) fixation in human eyes.

Design: Retrospective interventional surgical case series involving live and cadaveric human eyes.

Methods: In this study, we investigated the surgical outcomes and structural anatomy of secondary IOLs implanted with the SIS technique in human eyes. All cases involving SIS IOL fixation performed at a single academic center from January 1, 2012, through July 30, 2016, were reviewed to describe the surgical technique, common indications, clinical outcomes, and the rate of common operative complications. To investigate the structure of SIS-fixated IOLs in vivo, slit-lamp biomicroscopy, ultrasound biomicroscopy, and intraoperative endoscopy were analyzed to describe anatomical outcomes. The primary anatomical outcomes were the optic pupillary centration and location of haptic externalization. Results were correlated with cadaveric human eyes that underwent the SIS-IOL technique. Cadaveric eyes were imaged and analyzed using high-resolution photography for centration, stress measurements at the haptic–optic junction, and qualitative descriptors of IOL optic and haptic position.

Results: A total of 122 consecutive patients who underwent IOL placement using SIS technique were included in the study with mean follow-up of 1.52 years (range, 0.4–4.5 years). The majority (75%) of patients received a new 3-piece IOL for primary aphakia or after IOL exchange. The other patients (25%) had a dislocated 3-piece IOL that was rescued using the SIS technique. Preoperative mean Snellen visual acuity was 20/633 (logarithm of the minimum angle of resolution = 1.501). At the final visit, the mean best-corrected visual acuity was 20/83 (logarithm of the minimum angle of resolution = 0.6243) and final mean spherical equivalent was −0.57 diopters. The most common complications were vitreous hemorrhage (22% of eyes), which resolved spontaneously in most cases, and cystoid macular edema. The rates of IOL dislocation, IOL decentration, haptic erosion, IOL tilting, iris capture, and endophthalmitis were low. Intraoperative endoscopy and ultrasound biomicroscopy demonstrated a securely fixated IOL and well-centered optic without iris or ciliary body touch. Structural study of cadaveric eyes confirmed IOL optic and haptic anatomy observed during live human surgery. The ab interno haptic insertion was the anterior pars plana, away from the iris, ciliary processes and ora serrata. The degree of haptic externalization was correlated with the degree of strain on the haptic–optic junction. The angle of the haptic–optic junction in SIS-fixated IOLs (33.97°) was not significantly different compared with overlaid native nonfixated IOL (32.93°) but increased slightly with degree of haptic tip externalization (36.26 and 39.16o for 2 and 3 mm haptic externalizations, respectively).

Conclusion: In this comprehensive study, we demonstrate the surgical outcomes achieved with SIS fixation of IOLs. Surgical and postoperative complications do occur, albeit at a low rate, and can effectively be managed with excellent anatomical and visual outcomes. The structural and anatomical data in this study may help guide SIS placement and optimize long-term surgical results.

Clinical outcomes from 122 patients who underwent sutureless intrascleral fixation of secondary intraocular lenses were assessed and correlated with anatomical and structural analysis in cadaveric human eyes.

*Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; and

Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan.

Reprint requests: Jeremy D. Wolfe, MD, MS, Associated Retinal Consultants, P.C., William Beaumont Hospital, 3555 West Thirteen Mile Road, Royal Oak, MI 48073; e-mail: jwolfe@arcpc.net

B. Todorich (Fellow's Forum Research Award, American Society of Retina Specialists) and M. A. Woodward (receives Grant funding from the National Eye Institute NEI, K23EY023596).

G. A. Williams (consultant for Alcon). The remaining authors have no conflicting interests to disclose.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (www.retinajournal.com).

J. D. Wolfe had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

© 2018 by Ophthalmic Communications Society, Inc.