Secondary Logo

Institutional members access full text with Ovid®

The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint

Seino, Daisukea,b; Tokunaga, Atsushia; Tachibana, Toshiyab; Yoshiya, Shinichib; Dai, Yia; Obata, Koichia; Yamanaka, Hirokia; Kobayashi, Kimikoa; Noguchi, Koichia,*

doi: 10.1016/j.pain.2006.02.032

Pain during inflammatory joint diseases is enhanced by the generation of hypersensitivity in nociceptive neurons in the peripheral nervous system. To explore the signaling mechanisms of mechanical hypersensitivity during joint inflammation, experimental arthritis was induced by injection of complete Freund’s adjuvant (CFA) into the synovial cavity of rat knee joints. As a pain index, the struggle threshold of the knee extension angle was measured. In rats with arthritis, the phosphorylation of extracellular signal-regulated kinase (ERK), induced by passive joint movement, increased significantly in dorsal root ganglion (DRG) neurons innervating the knee joint compared to the naïve rats that received the same movement. The intrathecal injection of a MEK inhibitor, U0126, reduced the phosphorylation of ERK in DRG neurons and alleviated the struggle behavior elicited by the passive movement of the joint. In addition, the injection of U0126 into the joint also reduced the struggle behavior. These findings indicate that the ERK signaling is activated in both cell bodies in DRG neurons and peripheral nerve fibers and may be involved in the mechanical sensitivity of the inflamed joint. Furthermore, the phosphorylated ERK-positive neurons co-expressed the P2X3 receptor, and the injection of TNP-ATP, which antagonizes P2X receptors, into the inflamed joint reduced the phosphorylated ERK and the struggle behavior. Thus, it is suggested that the activation of the P2X3 receptor is involved in the phosphorylation of ERK in DRG neurons and the mechanical hypersensitivity of the inflamed knee joint.

aDepartment of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya 663-8501, Japan

bDepartment of Orthopedic Surgery, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya 663-8501, Japan

*Corresponding author. Tel.: +81 798 45 6415; fax: +81 798 45 6417.


Received July 20, 2005; received in revised form February 14, 2006; accepted February 27, 2006.

© 2006 Lippincott Williams & Wilkins, Inc.
You currently do not have access to this article

To access this article:

Note: If your society membership provides full-access, you may need to login on your society website