Share this article on:

Comparing the Optical Properties of Soft Contact Lenses On and Off the Eye

Kollbaum, Pete S.*; Bradley, Arthur; Thibos, Larry N.

doi: 10.1097/01.opx.0000434275.93435.da
Original Articles

Purpose The purpose of the current study was to examine the on- and off-eye optical performance of two types of soft contact lenses (hydrogel and silicone hydrogel).

Methods The monochromatic aberrations (λ = 850 nm) of contact lenses were measured on-eye using a clinical Shack-Hartmann ocular aberrometer. In addition, we used an off-eye single-pass contact lens aberrometer (λ = 540 nm) in which the soft contact lens was placed within a wet cell. Comparison of the lower and higher order aberrations measured with these two methods required compensation for different wavelengths and knowledge of the refractive index of the contact lens materials.

Results The measured on-eye sphere and spherical aberration values were generally similar to those measured off-eye and those specified by the lens manufacturers for both types of soft contact lenses. However, there were notable differences, especially for high plus-powered lenses, which typically exhibited lower sphere power on the eye than expected from the lens specifications and from the off-eye measured powers, both of which were almost identical. Longitudinal spherical aberration varied with lens power in the hydrogel lenses, as expected from geometric optics theory. Longitudinal spherical aberration measurements on- and off-eye, however, deviated significantly from that expected of a thin lens with spherical surfaces due to surface asphericities. The difference between on- and off-eye optics can be modeled as a tear lens or as relative lens thickness changes caused by lens flexure.

Conclusions The results of the current study reveal that the major difference between the on-eye lens optics and the manufacturers’ specifications is not due to lens errors but due to eye-lens interactions, which could be either lens flexure or a tear lens forming behind the soft contact lens.



School of Optometry, Indiana University, Bloomington, Indiana.

Pete S. Kollbaum, School of Optometry, Indiana University, 800 E Atwater Ave, Bloomington, IN 47405

© 2013 American Academy of Optometry