Original Article: PDF OnlyFactors Determining Rigid Contact Lens FlexureCORZINE, JOHN C. OD; KLEIN, STANLEY A. PhDAuthor Information Neurometrics Institute, Berkeley, California, and University of California at Berkeley, School ofOptometry, Berkeley, California Optometry and Vision Science: August 1997 - Volume 74 - Issue 8 - p 639-645 Buy Abstract Background. Many factors have been demonstrated to influence flexure of rigid contact lenses, but the contributions of surface tension and eyelid forces to flexure are not well understood. Methods. We placed lenses on a model eye consisting of a polymethyl methacrylate (PMMA) base which could be flexed, and measured resultant flexure with a videokeratoscope. We varied the base toricity, sequence of measurement, and lens base curve. The effects of evaporation of the postlens fluid were also observed. Results. Clinically significant flexure (>0.50 D) occurred when two conditions were met: (1) the volume of the postlens space would increase if the lens unflexed, and (2) there was a paucity of fluid available to fill that space. Flexure was minimal (≥0.50 D) when ample fluid was present. Conclusion. Surface tension forces serve more to maintain rather than create rigid lens flexure. Our model helps to explain why steep-fitting lenses flex more and leads to several predictions for flexure, which appear generally to be obeyed. © 1997 American Academy of Optometry