BACKGROUND:
The concept of maximally safe resection (MSR) has been shown to improve clinical outcomes in the treatment of high-grade gliomas (HGGs). To achieve MSR, surgical adjuncts such as functional imaging, neuronavigation, intraoperative mapping, ultrasound, and fluorescence-guided surgery are routinely used. 5-Aminolevulinic acid (5-ALA) is an oral agent that has been increasingly adopted in fluorescence-guided resection of HGG. In randomized clinical trials of 5-ALA, it has been shown to increase the extent of resection and progression-free survival in HGG. Current commercially available 5-ALA detection systems are all microscope-based and can sometimes be cumbersome to use.
OBJECTIVE:
To present our experience using a novel 5-ALA–enabled surgical loupe system.
METHODS:
5-ALA–enabled loupes were used in 11 consecutive patients with either suspected HGG on magnetic resonance imaging or recurrence of known lesions. Lesion appearance was examined under white light, 5-ALA loupes, and a 5-ALA microscope. Tumor specimens were checked for fluorescence and sent for pathologic examination.
RESULTS:
In our experience, a 5-ALA–enabled surgical loupe system offers excellent visualization of 5-ALA in patients with HGG. In 10 of 11 patients, fluorescent tissue was confirmed to be high-grade glioma by pathology. In 1 patient, tissue was not fluorescent, and final pathology was World Health Organization grade I meningioma.
CONCLUSION:
A 5-ALA–enabled surgical loupe system offers excellent intraoperative visualization of 5-ALA fluorescence in HGG and can be a viable surgical adjunct for achieving MSR of HGG.