Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening

Hu, Liming; Bell, David; Antani, Sameer; Xue, Zhiyun; Yu, Kai; Horning, Matthew P.; Gachuhi, Noni; Wilson, Benjamin; Jaiswal, Mayoore S.; Befano, Brian; Long, L. Rodney; Herrero, Rolando; Einstein, Mark H.; Burk, Robert D.; Demarco, Maria; Gage, Julia C.; Rodriguez, Ana Cecilia; Wentzensen, Nicolas; Schiffman, Mark

Obstetrical & Gynecological Survey: June 2019 - Volume 74 - Issue 6 - p 343–344
doi: 10.1097/OGX.0000000000000687

(Abstracted from J Natl Cancer Inst 2019; doi: 10.1093/jnci/djy225)

Ninety-nine percent of cervical cancers cases are caused by infections with a human papillomavirus (HPV). This cancer can be prevented in most women by cervical cancer screening and HPV vaccination.

Intellectual Ventures Global Good Fund, Bellevue, WA (L.H., D.B., M.P.H., N.G., B.W., M.S.J.); National Library of Medicine (S.A., Z.X., L.R.L.) and Division of Cancer Epidemiology and Genetics, National Cancer Institute (K.Y., M.D., J.C.G., N.W., M.S.), NIH, Bethesda; Information Management Services, Calverton (B.B.), MD; Early Detection and Prevention Section, International Agency for Research on Cancer, Lyon, France (R.H.); Rutgers New Jersey Medical School, Newark, NJ (M.H.E.); Albert Einstein College of Medicine, Bronx, NY (R.D.B.); and National Cancer Institute, NIH, Bethesda, MD (A.C.R.)

Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.