Abstract

Background: Precision health relies on large sample sizes to ensure adequate power, generalizability, and replicability; however, a critical first step to any study is the successful recruitment of participants.

Objectives: This study seeks to explore how the enrollment strategies used in a parent study contributed to the high consent rates, to establish current best practices that can be used in future studies, and to identify additional factors that contribute to consent into pediatric TBI biobanks.

Methods: Retrospective secondary analysis of data from a parent study with high consent rates was examined to explore factors affecting consent into biobanking studies.

Results: Of the seventy-six subjects who were approached, met the eligibility criteria, and reviewed the consent form, only n=16 (21.1%) declined to participate. The consented group represents 64.5% of those who met the eligibility criteria upon initial screening (n=93) and 78.9% of those with confirmed eligibility (n=76). Analysis of screening data suggested there were no major barriers to consenting individuals into this pediatric TBI biobank.

Discussion: There were no demographic or research-related characteristics that significantly explained enrollment. Ethically, to obtain true informed consent, parents need to understand not only their child’s diagnosis, prognosis, and medical care, but also the purpose of the proposed research, and its risks and benefits. Researchers need to implement best practices, including an comprehensive review of census data to identify eligible participants to approach, a pre-screening protocol, and effective consenting process to obtain informed consent so that precision care initiatives can be pursued.

Key Words: Human genetics; Brain injuries, Traumatic; Child; Precision Health
Introduction

Traumatic brain injury (TBI) is the leading cause of death and permanent disability in children (Hill, McLean, & Wilson, 2018; Parent et al., 2018). Common causes of pediatric TBI include falls, blunt force trauma, and motor vehicle collisions in which the child is a passenger or pedestrian (Chen et al., 2017; Hill, McLean, & Wilson, 2018; CDC Injury Center, 2016).

Pediatric TBI has many consequences, including but not limited to: death, alterations in brain structures (Parent et al., 2018) with associated long-term behavioral and cognitive symptoms and poor health outcomes (Wilkinson et al., 2017). Despite the high incidence and increasing rates of TBI and its substantial impact on health outcomes and quality of life, there is no Food and Drug Administration (FDA) approved treatment for TBI in children or adults (Chen et al., 2017; Narayan et al., 2002; Stanley et al., 2012).

In all age groups TBI remains understudied, and the majority of published human studies to date have enrolled only adults; together, these contribute to significant gaps in the pediatric TBI knowledge base. A review of the limited published evidence found that the majority of pediatric TBI studies enrolled 1 child or less per month per recruitment site (Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006). However, there is little discussion of how to increase enrollment of TBI cases and no consensus on how to address existing barriers to screening and consenting efforts (Chen et al., 2017; Menon & Ward, 2014; Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006; Maas et al., 2013; Stanley et al., 2012; Stanley et al., 2017).

A critical first step to any study is the recruitment of participants. The arduous process of enrollment in all TBI studies and particularly in pediatric TBI becomes especially problematic in the context of molecular genomic research. Without recruitment of a sufficient number of participants into sample repositories (biobanks), studies may lack sufficient power to detect
statistically significant relationships between biological markers and clinical outcomes (Mollayeva, Cassidy, Shapiro, Mollayeva, & Colantonio, 2017; Reuter-Rice, Eads, Boyce, & Bennett, 2015). Precision health relies on studies that have a large enough sample size to ensure they are adequately powered, generalizable to the clinical population of interest and replicable. Moreover, recruitment of large numbers of cases into biobanks promotes ongoing discovery through secondary analysis and data sharing. Biobanks are important because evidence suggests that some biomarkers may predict recovery or reflect pathological processes that could be targeted therapeutically (Au & Clark, 2017; Osier et al., 2017). Unfortunately, existing data is largely limited to adult studies and the state-of-the-science lags behind for pediatric TBI (Reuter-Rice, Eads, Boyce, & Bennett, 2015). Indeed, two recent literature reviews found pediatric-specific evidence was grossly underrepresented with biomarkers in pediatric TBI cases being examined in only 16 of 131 (Reuter-Rice, Eads, Boyce, & Bennett, 2015) and 16 of 7,150 (Daoud et al., 2014) publications. Moreover, it is posited that the genetic markers found to be related to recovery in adults may be significantly different in the developing brain (Kurowski, Martin, & Wade, 2012). For these reasons pediatric TBI biobanks will be an essential resource for improving the outcomes of this understudied population (Brothers, 2011; Giesbertz, Bredenoord, & Van Delden, 2015; Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006; Reuter-Rice, Eads, Boyce, & Bennett, 2015). Thus, efforts to maximize the success of screening and consenting processes merit exploration.

There are several factors that affect successful recruitment into pediatric TBI biobanks. First, personnel must always be available to promptly detect potential brain injury patients using the hospital census and then further screen the electronic health record (EHR) to confirm inclusion and exclusion criteria are met. Next, the parent or legal authorized representative
(LAR) must be identified, available, and approached. The consent then must be reviewed and the parent must decide whether or not to enroll the child or decline participation. Finally, the child should be evaluated for capacity to assent based on age and current health status, and if he or she is deemed able to provide assent, the child should also be given the opportunity to decline participation or provide informed assent. At each stage of the process, potential participants may be lost. Moreover, many studies have a target window for biospecimen collection, which should be kept as consistent as possible, appreciating that several factors affect the time from injury to sample collection (Reuter-Rice, Eads, Boyce, & Bennett, 2015) and taking care to not rush or pressure the potential participant.

Factors that could negatively impact screening efforts include a lack of available study personnel to monitor the hospital census, incomplete records, and inconsistent documentation across providers. Barriers to approaching families include parent(s) or study personnel being unavailable. Even when parents and study staff are available and parent(s) are approached for consent, parents are much more restrictive in their willingness to release their child’s biospecimen as well as associated personal and health data, compared to adults consenting for herself/himself. These lower rates are due to parental concerns of unknown future risks to the child (Burstein, Robinson, Hilsenbeck, McGuire, & Lau, 2014). Further, many parents do not know what a biobank is, often mistaking it for a “freezer” or “blood donation.” Likewise, many parents mistakenly associate genetic data only with hereditary diseases, and do not understand the potential link of genetic components to TBI recovery (Salvaterra et al., 2014). Beyond these documented misconceptions, very little is known about factors that affect consent/assent into biobanks, except that the most commonly stated reason for participation is the altruistic desire to help others (Kassam-Adams & Newman, 2005; Salvaterra et al., 2014).
Enrollment rates into pediatric TBI studies tend to be low, ranging from 35%–62% (Dennis et al., 2017; Mollayeva, Cassidy, Shapiro, Mollayeva, & Colantonio, 2017; Pearl et al., 2014; Wilkinson et al., 2017). Worse yet, any reporting of recruitment success in pediatric critical illness research is the exception and not the norm; a recent meta-analysis of 215 studies found that 80% of publications did not provide sufficient data to determine what proportion of screened individuals met eligibility criteria, and 77% did not provide sufficient information to determine the recruitment rate (Hudson et al., 2017). Beyond the underreporting of recruitment rates, no pediatric TBI study to date has systematically reported on the reasons for not obtaining consent in eligible individuals, as has been done in other pediatric critical care populations (Menon & Ward, 2014).

Considering the slow progress of pediatric TBI studies, evidence is needed surrounding strategies that research teams can implement to maximize the success of their own recruitment. The primary purpose of this secondary analysis is to use data and study protocols to explore how the enrollment strategies used in the parent study may have contributed to the relatively high consent rates compared to published literature. A secondary aim is to reflect upon these successes to establish current best practices that can be used in future studies. A final aim is to identify additional factors that contribute to consent into pediatric TBI biobanks.

Methods

Parent Study

The parent study recruited children with TBI into a biobank to support analysis of the relationship between biomarkers and clinical outcomes after brain trauma. The recruitment period was between December 2012 and July 2015. Screening and enrollment was a 3-step process which was documented to inform future recruitment efforts, including the analysis used...
in the present daughter study, and to create an electronic trail of accessed medical records to verify Health Insurance Portability and Affordability Act (HIPAA) compliance. First, a pre-screen of the patient census on the hospital units of interest was used to identify patients with a chief complaint suggestive of possible brain injury (e.g. fall; motor vehicle collision) without evidence of any violation of study inclusion/exclusion criteria (e.g. age, no acquired brain injury). Second, the medical records of patients identified as potential candidates in the preliminary scan were examined and screened to further establish eligibility using the study’s inclusion criteria (e.g. previously healthy children, aged 10 days to 15 years, admitted for trauma related brain injury with access for biologic sampling and Transcranial Doppler Ultrasound insonation) and exclusion criteria (e.g. history of developmental delay, acquired brain injury). Whenever possible, the parent or LAR of a child who appeared eligible upon screening were approached to solicit interest in hearing about the study, confirm eligibility, and, if warranted, review the informed consent document. The informed consent and assent documents were provided in English and Spanish, with translation services available if needed. Interested individuals were enrolled into the parent study, the results of which have been previously published (O’Brien, Reuter-Rice, Khanna, Peterson, & Quinto, 2010; Reuter-Rice, Eads, Boyce, & Bennett, 2015; Vaewpanich & Reuter-Rice, 2016). In addition, the team elected to not approach any family with a child who presented with a devastating brain injury that would warrant a brain death examination within the first 24 hours of admission.

Daughter Study

This study is a retrospective secondary analysis of data from the abovementioned parent study. SPSS version 25 was used for all data management, cleaning, and analysis. Descriptive statistics were generated separately for two groups of individuals who appeared eligible upon
screening: those who enrolled vs. those who were not enrolled due to brain death, inability to approach the parent, or because the parent declined the offer to participate. The percentage of individuals who meet screening eligibility criteria who were enrolled was calculated using the number of individuals whose medical records suggested they were eligible. Formal statistical testing was performed using chi-squared analysis of preliminary data obtained during screening: sex, race, admission unit, and mechanism of injury. Because of the small sample size of eligible individuals and the minimum required cell size of at least n=5 for chi squared analysis, the following variables were re-coded: race (white vs. other), mechanism of injury (fall vs. other), and admission location (ICU vs. other).

Data was also analyzed separately for individuals confirmed to be eligible who consented versus those who declined. This was done to account for those individuals who seemed eligible upon screening but later found to not meet inclusion/exclusion criteria and other individuals who could not have their eligibility confirmed due to a failure to make contact with the family or a language barrier. The percentage of individuals confirmed to be eligible who were enrolled was based on only those potential participants whose families were approached and had eligibility confirmed. The duration of the recruitment period was calculated using the start and end dates provided by the parent study and the recruitment rate was calculated as the number of enrolled individuals divided by recruitment duration. To supplement these analyses, the PI and CRCs involved provided insights into factors they thought may have contributed to this study’s success, though not all of these ideas could be formally tested due to a lack of available data in accordance with the original human subjects’ research approvals and HIPAA guidelines.

Results
In the parent study, a total of N=203 individuals were preliminarily screened; upon further screening of the EHR, only N=93 fulfilled the preliminary eligibility criteria. Of the 93, an additional n=17 (18.3%) were not approached for consent due to one of three reasons. First, in five cases, the patients were excluded because they met criteria for brain death or imminent death upon evaluation (5.4%). Of the remaining eighty-eight cases, eligibility consent could not be obtained in eight patients because a parent was unavailable (9.0%), or the study personnel was not available to approach the parent (n=4, 4.5%). The remaining seventy six who were approached, met the eligibility criteria, and the consent form reviewed; of those, only n=16 (21.1%) declined to participate resulting in a total sample of n=60. The consented group represents 64.5% of those who met the eligibility criteria upon screening (n=93) and 78.9% of those with confirmed eligibility (n=76).

Analysis of screening data suggested there were no major barriers to consenting individuals into this pediatric TBI biobank. There were no statistically significant differences in demographics, injury mechanism, or admission unit among those children who were eligible upon screening who were subsequently enrolled versus those who were lost or declined to participate (Table 1). When comparing consenting and declining individuals, there were no statistically significant differences in demographics, injury mechanism, or admission unit (Table 2). Additional data was recorded for individuals consented and enrolled in the parent study (Table 3). Enrolled cases had mild, moderate, and severe injury and ranged in age from 10 days to 15 years. Consent was most commonly obtained from the mother (70.0%); in only 1 case (1.7%) consent was obtained from a LAR instead of a parent. For n=59 cases (98.33%), assent could not be given by the child directly, as he or she was either too young or too acutely
impaired by injury to do so. Among the enrolled individuals 13.3% identified as Hispanic/Latino; no ethnicity data was collected for screened/approached individuals.

Discussion

Relationship to Past Literature

The current study is unique in that it is the first to empirically evaluate factors associated with successful enrollment of pediatric TBI cases into a biobank. There were no demographic or research-related characteristics that significantly explained enrollment. Enrollment rates in the parent study were high compared to other publications, with 60 children consented out of 93 individuals deemed eligible upon screening the EHR (64.5%), 78.9% of those who were approached and had their eligibility confirmed. These enrollment percentages were higher than those previously published (35%-62%); notably, studies varied in terms of how they calculated this value (Mollayeva, Cassidy, Shapiro, Mollayeva, & Colantonio, 2017; Pearl et al., 2013; Wilkinson et al., 2017; Dennis et al., 2017). For example, Mollyeva et al. reported that 110 of 178 (61.8%) of participants contacted consented, but this was prior to confirming eligibility; upon reviewing eligibility criteria an additional 16 people were excluded. The final sample size was 94 people (52.8% of those approached), with a mean age of 45.20 (Mollayeva, Cassidy, Shapiro, Mollayeva, & Colantonio, 2017). Likewise, Dennis et al. report participation rates of 35% based on data from 44 of 124 contacted individuals, including those found to be ineligible; this number omits 6 individuals who consented but had unusable data. These individuals were ages 8-18 years old. Wilkinson et al. and Pearl et al. recruited participants diagnosed with TBI of ages 2.5 to 17 years and 6 to 17 years, respectively.

The parent study’s recruitment rate of 1.94 participants per month was higher than what has been found in the majority of past studies, reviewed by Natale, Joseph, Pretzlaff, Silber, & Guerguerian (2006). Only one past study demonstrated higher rates than 1 per month per site;
however, this study was characterized by unique inclusion criteria that may have contributed to the high rates (Gausche et al., 2000). Specific factors in the parent study believed to have contributed to these relatively high enrollment rates include a high availability of the PI and CRCs to approach the parent/LAR of a potential participant and effective communication between team members when a potential participant was identified whose parent was unavailable so that follow up could be pursued. Another factor enhancing effective communication included the availability of both English and Spanish speaking consenter and resources. Combined, these efforts led to only 4 (4.3%) out of the 93 individuals deemed eligible upon screening being missed by study personnel. Beyond study team availability, parent inaccessibility is a barrier to recruitment; in this study, there were 8 potentially eligible cases (8.6%) where the child’s parent(s) were not available during the study eligibility window and were subsequently lost to follow up.

Contributing factors to parent/LAR unavailability likely have multi-faceted roots which could not be explored using data from the parent study. However, a potential scenario that could explain the unavailability of parents is an injured parent being treated in a different healthcare facility (e.g. both the parent and child were in the same motor vehicle collision). Other examples include parents who were: at work, out of town, caring for other children, or lacking transportation to the hospital. Past studies corroborated parent/LAR unavailability was a barrier to informed consent due to the asynchronous timings of patient and guardian arrival (Stanley et al., 2017). These factors are challenging to study due to the necessary privacy safeguards that protect the personal information of individuals who do not consent to participate in a study.

Notably in the data, 7 of the 8 participants whose parent or LAR could not be approached were
non-white. Unfortunately, this study was underpowered to statistically test for group differences based on race/ethnicity. This represents an important area for follow up in future studies.

There were no significant differences in the sex or race of the individuals who were eligible but not consented (declined or lost) versus consented and enrolled. However, there was a trend toward individuals who were screened but not enrolled being non-white (p=0.074); the small sample size in this study should be considered as this may have contributed to being underpowered to detect such differences. This should be examined in future studies to add to the sparse literature on how race and ethnicity impact enrollment (Daunt, 2003; Halbert, McDonald, Vadaparampil, Rice, & Jefferson, 2016). There were no significant differences in the individuals who were approached but declined compared to those who consented and were enrolled. Although additional data is needed, this preliminary data suggests that the parent study sample may be generalizable to the patient population at the health center where recruitment occurred in terms of demographic characteristics. This data also proposes that there was no specific barrier to enrolling certain racial or ethnic groups once a family was approached, which, had they been evident, may have pointed to an issue in translation of consent forms or available translation services.

Other Barriers to Enrollment

Ethically, many factors need to be considered, especially in observational studies not offering potential benefits, such as the parent study, and most other studies involving biobanking. When approaching families for enrollment, in order to obtain true informed consent, parents/LAR need to understand not only their child’s pre-injury health, injury diagnosis, prognosis, and medical care, but also the purpose of the proposed research, as well as its risks and benefits (Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006). A major obstacle of
obtaining true consent is explaining the nature of the research to parents (Barfield & Church, 2005). Prior studies suggest that not only do parents overestimate their understanding of the informed-consent discussion, but only half of participants understand the aim of the study (Erraguntla, De la Huerta, Vohra, Abdolell, & Levin, 2012; Nishimura et al., 2013; Anderson, Newman, & Matthews, 2017). When participants have been asked to recall the aim of the study in which they participated they were frequently unable to do so; rather they remembered what they did for the research team, such as give a blood or urine sample, answer questions, etc. (Anderson, Newman, & Matthews, 2017). Further, with biobanking, researchers need must take into consideration new ethical questions that have surfaced. A common misconception by participants is that they will receive a therapeutic treatment. Researchers need to be clear that by participating in biobank research, it is only observational; The benefit will be for greater knowledge of diseases to help future patients (Anderson, Newman, & Matthews, 2017; Bernhardt et al. 2015). Another barrier to consenting in biobanking studies is participant fear and hesitancy, due to mistrust that their data will be shared with third parties without their knowledge and used for purposes other than what they consented to (Kraft et al., 2018). The need for an open, trusting relationship between researchers and participants is crucial to ensure truly informed consent (Kraft et al., 2018). In the parent study, the use of clear and detailed consent forms and review of these documents by trained personnel helped to address these barriers.

Another ethical challenge is the rights of children enrolled in the study. The value of involving children and adolescents in their own medical decision-making is increasingly being recognized (Giesbertz, Bredenoord, & van Delden, 2015; Katz & Webb, 2016). Despite this, there is evidence that most children younger than 9 years of age lack the capacity for participation in clinical trials, and there is no definitive low age cutoff for ability to provide
assent (Barfield & Church, 2005; Giesbertz, Bredenoord, & van Delden, 2015; Leibson & Koren, 2015). In TBI cases, children may also be incapacitated or mentally debilitated and unable to state their desires, regardless of age or maturity status. In the parent study, assent was often not attained due to a low Glasgow Coma Scale (GCS) score or symptoms of TBI. The ethical principle of autonomy is not as applicable in pediatric cases, rather maintaining the best interests of the child should be utilized (Barfield & Church, 2005). However, in non-therapeutic studies such as collecting DNA for biobanks, a balance between potential harm to child during research and the critical need for advancements in pediatric TBI research and clinical management must be achieved (Barfield & Church, 2005; Giesbertz, Bredenoord, & van Delden, 2015). The appropriate transfer of information to guardians and the children, in particular the potential risks and benefits, is at the heart of consent (Leibson & Koren, 2015). In an ideal case, the researcher would be able to obtain assent of the child and parental consent while maintaining an overriding aim of attending to the best interests of the child (Barfield & Church, 2005).

Key Players in The Parent Study’s Enrollment of Pediatric Brain Injury Cases

Principal Investigator (PI): The principal investigator is ultimately responsible for the planning and execution of the research study. Starting with the initial study conceptualization and drafting of institutional review board documents, the PI’s efforts are key to the study’s success. Past publications have discussed the impact of writing consent forms consistent with best practices (Dove, Avard, Black, & Knoppers, 2013). Moreover, in the parent study, the PI selected all CRCs and ensured they were adequately trained. The PI was on-call 24/7 to answer any questions or approach families who met screening criteria. The PI’s clinical expertise in the pediatric population as a pediatric acute care nurse practitioner and Fellow of the American
College of Critical Care Medicine, as well as recognition as a nurse researcher with numerous publications in the field of pediatric TBI also contributed to the success of the study.

Clinical Research Coordinator (CRC): Supporting the PI in this study were 5 CRCs over a 3-year timeframe; each CRC was experienced in their role and comfortable interacting with pediatric patients and their families. They were knowledgeable about the study goals, and had a folder containing key information needed to screen and enroll participants (e.g. checklist, information on how to request translation services, directions for how to navigate the EHR). Each CRC was trained to be proficient in all aspects of the study protocol including screening, consenting, and collection of data and biosamples; adequate training resulted in improved consistency and therefore consent rates. The CRCs built rapport with the families by maintaining contact with them every day of hospitalization during the study period. Along with actively pursuing new, potential participants and following-up with enrolled participants, the CRCs developed a thorough pre-screening process which minimized access to and use of protected health information. With the use of this process, detailed above, the EHR of only a few patients who did not meet eligibility criteria were accessed.

Registered Nurses (RNs): Registered nurses (RNs) as study champions. In this study, 5 nurses self-selected as study champions over the 3-year timeframe. They were involved in multiple aspects of the study. These RNs were not only experienced and comfortable on their units, but were also passionate about pediatric TBI. They alerted the study team of potential patients, as well as assisted newer RNs with data-collection procedures on enrolled individuals. These nurses were acknowledged by the PI in formal letters to the director of nursing, and their study participation counted towards their Clinical Ladder criteria, promoting future involvement in similar ventures. The role of nurses in enrollment remains understudied and represents an
avenue for future research, since emerging evidence does suggest nurses play important roles in facilitating clinical research (Axson, Giordano, Hermann, & Ulrich, 2017; Susilo, van Dalen, Chenault, & Scherbier, 2014; Tinkler, Smith, Yiannakou, & Robinson, 2018).

Parents and Legal Authorized Representatives (LARs): While not a formal member of the research team, parents/LARs constitute key players in biobanking enrollment. This participation is especially laudable considering consent is heavily burdened by emotion; TBI is shocking and distressing, creating a challenging environment for good, informed decision making. For parents, receiving news of life threatening conditions in their children creates emotional and psychological stress that can interfere with decision making (Katz & Webb, 2016). Parents tend to be both emotionally and cognitively overwhelmed, especially in the initial hours and days when recruitment to a study would occur (Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006), which may contribute to low enrollment rates. In a prior study on pediatric research in a critical care population, the most commonly stated reason for parental consent refusal was being overwhelmed, and the second most common being they did not want any unnecessary procedures performed (Menon & Ward, 2014). Notably, 70% of the family members who signed the consent for study participation were the participant’s mother.

Despite these stressors, the parent study found parents/LARs expressed a strong desire to help other children via participation in the study. This is consistent with a prior study, which found that 52% of children and 74% of parents were glad they participated in the study, and that primarily both parents and children felt good about helping others, 90% and 77%, respectively (Kassam-Adams & Newman, 2005). The beneficence and willingness of the parent(s)/LAR(s) to participate likely contributed greatly to the success of the parent study.
Limitations and Future Research

Although this study makes important contributions to the knowledge base, it is limited in that it was conducted at a single medical center, restricting the study sample size and generalizability to the entire population of TBI cases. Future studies should be expanded to multiple recruitment sites to ensure a greater pool of potential candidates. The need for multi-site studies and screening at non-pediatric hospitals are cited in the literature; these strategies require significant effort but could greatly improve enrollment rates. A previous study reported that a majority of children with severe TBI were discharged from either a children’s hospital (41%), or a children’s unit in a general hospital (34%), indicating that studies will need to diverge from focusing on pediatric-specific hospitals, and begin multicenter studies to obtain more data (Stanley et al., 2012; Natale, Joseph, Pretzlaff, Silber, & Guerguerian, 2006). The study was unable to follow up with those who declined to enroll. Future studies should also seek IRB approval to survey those who decline to enroll to collect data on how to improve the consenting process and motivations for declining participation.

Conclusions

The goal of this inquiry is to promote the enrollment of more pediatric TBI patients into biobanks and to garner evidence to support precision care initiatives. Based on these preliminary findings, the importance of thorough screening and availability of the PI and CRC is not to be undervalued, nor is the role of having support from nurses and nurse study champions. Ensuring research staff are not the limiting factor is crucial, since some barriers to enrollment are beyond the researchers’ control, such as the unavailability of parents. There are many reasons parents who are approached would chose not to participate in research, including: privacy concerns,
religious reasons, or perceived participant burden. It is up to the research team to design and execute the study in such a way that minimizes loss of participants.

In order for pediatric TBI research to advance, researchers need to be efficient in using census data to identify eligible participants to approach. Implementing a pre-screening protocol, such as in the parent study, may expedite the process and avoid HIPAA compliance issues. Then, once eligible individuals are identified, researchers must be successful in obtaining informed consent from the parent and, if possible, assent from the child. Finally, efforts must be made to retain participants in the study so that they are not lost to lack of follow up or ask to be withdrawn from the study/biobank. Considering the relatively low incidence of TBI among children (Schneier, Shields, Hostetler, Xiang, & Smith, 2006), and the propensity for rapid discharge shortly after pediatric TBI (Robertson, McConnel, & Green, 2013), these best practices can potentially make a substantial difference in recruiting and biobanking efforts, a critical first step in advancing the state-of-the-science in pediatric TBI.
388 References

precision medicine research with african americans. Plos One, 11(7), e0154850.
https://doi.org/10.1371/journal.pone.0154850

Legends

Table 1. Comparison of Families Screened but Not Enrolled (i.e. Those Lost to Follow Up Before Eligibility Could be Confirmed, Deemed Ineligible, or Who Declined) to Those Who Consented and Enrolled.

Table 2. Comparison of Those Families that Were Approached but Not Enrolled (i.e. Declined) to Those Who Consented and Enrolled.

Table 3. Additional Participant Characteristics and Research-Related Characteristics for the Consented Sample (n=60).

Figure 1. Flowchart of Participants in this Study. The flow of the N=203 individuals screened individuals to the N=60 individuals enrolled is explained in this figure with the reasons for participant loss described.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Enrolled (n=60)</th>
<th>Eligible but Not Enrolled (n=33)</th>
<th>χ^2 (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (White): N (%)</td>
<td>37 (61.7%)</td>
<td>14 (42.4%)</td>
<td>3.183 (0.074)</td>
</tr>
<tr>
<td>Sex (Male): N (%)</td>
<td>34 (56.7%)</td>
<td>22 (66.7%)</td>
<td>0.889 (0.346)</td>
</tr>
<tr>
<td>Admission (ICU): N %</td>
<td>40 (66.7%)</td>
<td>18 (54.5%)</td>
<td>1.333 (0.248)</td>
</tr>
<tr>
<td>Mechanism (Fall): N %</td>
<td>23 (38.3%)</td>
<td>13 (39.4%)</td>
<td>0.010 (0.920)</td>
</tr>
</tbody>
</table>
Comparison of Approached Families (Enrolled vs. Declined)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Enrolled (n=60)</th>
<th>Declined (n=16)</th>
<th>χ^2 (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (White): N (%)</td>
<td>37 (61.7%)</td>
<td>11 (68.8%)</td>
<td>0.272 (0.602)</td>
</tr>
<tr>
<td>Sex (Male): N (%)</td>
<td>34 (56.7%)</td>
<td>11 (68.8%)</td>
<td>0.764 (0.382)</td>
</tr>
<tr>
<td>Admission (ICU): N (%)</td>
<td>40 (66.7%)</td>
<td>7 (43.8%)</td>
<td>2.811 (0.094)</td>
</tr>
<tr>
<td>Mechanism (Fall): N (%)</td>
<td>23 (38.3%)</td>
<td>9 (56.3%)</td>
<td>1.663 (0.197)</td>
</tr>
</tbody>
</table>
Research-Related Characteristics of Consented Individuals

<table>
<thead>
<tr>
<th>Team Member who obtained consent, (n) %</th>
<th>CRC 1</th>
<th>(n=22) 36.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRC 2</td>
<td>(n=20) 33.3%</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>(n=8) 13.3%</td>
</tr>
<tr>
<td></td>
<td>CRC 3</td>
<td>(n=8) 13.3%</td>
</tr>
<tr>
<td></td>
<td>CRC 4</td>
<td>(n=1) 1.7%</td>
</tr>
<tr>
<td></td>
<td>CRC 5</td>
<td>(n=1) 1.7%</td>
</tr>
<tr>
<td>Family member who signed consent, (n) %</td>
<td>Mother</td>
<td>(n=42) 70.0%</td>
</tr>
<tr>
<td></td>
<td>Father</td>
<td>(n=17) 28.3%</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
<td>(n=1) 1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assent Obtained, (n) %</th>
<th>Yes</th>
<th>(n=1) 1.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>(n=59) 98.3%</td>
</tr>
</tbody>
</table>

Additional Demographics on Consented Individuals

<table>
<thead>
<tr>
<th>Ethnicity, (n) %</th>
<th>Non-Hispanic or Latino</th>
<th>(n=52) 86.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hispanic or Latino</td>
<td>(n=8) 13.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glasgow Coma Scale Severity, (n) %</th>
<th>Mild</th>
<th>(n=44) 73.3%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>(n=2) 3.3%</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>(n=14) 23.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Age in years, mean (range, standard deviation [SD])</td>
<td>5.5 years (range = 0-15; SD = 5.45)</td>
<td></td>
</tr>
<tr>
<td>Length of stay in days, mean (range, standard deviation [SD])</td>
<td>9.52 days (range = 1-81; SD = 15.82)</td>
<td></td>
</tr>
<tr>
<td>Hours to consent from admission to hospital, mean (range, standard deviation [SD])</td>
<td>16.44 hours (range = 4-43; SD = 8.65)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1

Participants Screened (N = 203)

Did not meet eligibility criteria (N = 110)

Further Screened (N = 93)

Eventual omission from study (N = 17)

Eligible, approached, and consent reviewed (N = 76)

Participants who declined (N = 16)

Enrolled in study (N = 60)

Missed due to lack of personnel (N = 4)

Parent not available (N = 8)

Met criteria for brain death (N = 5)