Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Principal Component Analysis of the Biomechanical Factors Associated With Performance During Cutting

Welch, Neil1,2,3; Richter, Chris1,2; Franklyn-Miller, Andy1,4; Moran, Kieran2,3

Journal of Strength and Conditioning Research: January 17, 2019 - Volume Publish Ahead of Print - Issue - p
doi: 10.1519/JSC.0000000000003022
Original Research: PDF Only
Buy
PAP

Welch, N, Richter, C, Franklyn-Miller, A, and Moran, K. Principal component analysis of the biomechanical factors associated with performance during cutting. J Strength Cond Res XX(X): 000–000, 2018—The main aim of the current study was to investigate the relationship between kinematic variables in cutting and performance outcome across different angled cuts through the use of principal component analysis and permutation testing. Twenty-five male intercounty Gaelic football players (23.5 ± 4.2 years, 183 ± 6 cm, and 83 ± 6.9 kg) participated in the study. Three-dimensional motion capture was used to perform a biomechanical analysis of 110 and 45° cutting tasks. Principal component analysis and permutation testing revealed one principal component within the 45° cut (r = 0.26) and 2 principal components within the 110° (r = 0.66 and 0.27) cut that consistently correlated with performance outcome. Within the 45° cut, the identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and using faster and larger extensions of the hip and knee. Within the 110° cut, the first identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and resisting hip flexion then using hip extension. The second principal component was interpreted as relating to a performance cue of leaning in the direction of the cut.

1Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland;

2School of Health and Human Performance, Dublin City University, Dublin, Ireland;

3INSIGHT Center for Data Analytics, Dublin, Ireland; and

4Center for Health Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia

Address correspondence to Neil Welch, neilwelch@sportssurgeryclinic.com.

Copyright © 2019 by the National Strength & Conditioning Association.