Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Effect of Different Types of Loads on the Force-Velocity Relationship Obtained During the Bench Press Throw Exercise

Cosic, Marko1; Knezevic, Olivera M.2; Nedeljkovic, Aleksandar1; Djuric, Sasa3; Zivkovic, Milena Z.1; Garcia-Ramos, Amador4,5

The Journal of Strength & Conditioning Research: April 29, 2019 - Volume Publish Ahead of Print - Issue - p
doi: 10.1519/JSC.0000000000003183
Original Research: PDF Only
Buy
PAP

Cosic, M, Knezevic, OM, Nedeljkovic, A, Djuric, S, Zivkovic, MZ, and Garcia-Ramos, A. Effect of different types of loads on the force-velocity relationship obtained during the bench press throw exercise. J Strength Cond Res XX(X): 000–000, 2019—This study aimed (a) to evaluate the degree of linearity of the force-velocity (F-V) relationship across different types of loads, (b) to compare the magnitude of the F-V relationship parameters (maximum values of force [F0], velocity [V0], and power [Pmax]) between the different types of loads, and (c) to explore the concurrent validity of F0 with traditional measures of maximal strength. The F-V relationships of 15 physically active men (age: 20.9 ± 2.0 years, bench press 1 repetition maximum relative to body mass: 1.20 ± 0.10 kg·kg−1) were determined during the bench press throw exercise using predominantly gravitational (W), inertial (I), and combined (W + I) loads. The bench press maximal isometric force (Fiso) and the 1RM were also assessed. The individual F-V relationships were highly linear regardless of the type of load considered (median r [range] = 0.98 [0.94, 1.00]). The W + I load provided the largest value of F0 (972 ± 45 N; 6.0 and 14.6% higher than W and I, respectively), the I load the largest value of V0 (2.99 ± 0.34 m·s−1; 40.4 and 20.1% higher than W and W + I, respectively), and the W load the lowest value of Pmax (501 ± 46 W; −22.7 and −17.1% lower than I and W + I, respectively). The F0 obtained from the W load presented the highest association with Fiso and 1RM values (r > 0.90). The W + I load and the I load should be recommended to work closer to the F0 and V0 capacities, respectively. However, the W load should be recommended to assess maximal strength capacity through the value of F0.

1Faculty of Sport and Physical Education, The Research Center, University of Belgrade, Belgrade, Serbia;

2IInstitute for Medical Research, University of Belgrade, Belgrade, Serbia;

3Faculty of Sport, Institute of Kinesiology, University of Ljubljana, Ljubljana, Slovenia;

4Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; and

5Department of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of the Most Holy Concepción, Concepción, Chile

Address correspondence to Dr. Amador Garcia-Ramos, amagr@ugr.es.

Copyright © 2019 by the National Strength & Conditioning Association.