Secondary Logo

Share this article on:

Kraemer William J.; Bush, Jill A.; Bauer, Jeffrey A.; Triplett-McBride, N. Travis; Paxton, Nigel J.; Clemson, Angeliqué; Koziris, L. Perry; Mangino, Lisa C.; Fry, Andrew C.; Newton, Robert U.
Journal of Strength and Conditioning Research: August 1996
Article: PDF Only

ABSTRACTThe purpose of this study was to determine whether compression shorts affected vertical jump performance. Subjects, 18 men and 18 women varsity volleyball players, were thoroughly familiarized with the jump tests and experimental techniques. Testing utilized compression shorts of normal fit (CS), undersized compression shorts (UCS), and loose fitting gym shorts as the control garment (CT). All tests were conducted on the same day using a balanced, randomized block design to remove day-to-day variation. Jumps were performed on an AMTI force plate interfaced to a computer with customized software to determine jump force and power. Ten consecutive maximal countermovement jumps with hands held at waist level were evaluated. The garments had no effect on maximal force or power of the highest jump. However, mean force and power production over the 10 jumps when wearing the CS were significantly (p ≤ 0.05) higher than CT for both men and women. In men the UCS mean power production was also higher than the CT. The data indicate that compression shorts, while not improving single maximal jump power, have a significant effect on repetitive vertical jumps by helping to maintain higher mean jumping power.

The purpose of this study was to determine whether compression shorts affected vertical jump performance. Subjects, 18 men and 18 women varsity volleyball players, were thoroughly familiarized with the jump tests and experimental techniques. Testing utilized compression shorts of normal fit (CS), undersized compression shorts (UCS), and loose fitting gym shorts as the control garment (CT). All tests were conducted on the same day using a balanced, randomized block design to remove day-to-day variation. Jumps were performed on an AMTI force plate interfaced to a computer with customized software to determine jump force and power. Ten consecutive maximal countermovement jumps with hands held at waist level were evaluated. The garments had no effect on maximal force or power of the highest jump. However, mean force and power production over the 10 jumps when wearing the CS were significantly (p ≤ 0.05) higher than CT for both men and women. In men the UCS mean power production was also higher than the CT. The data indicate that compression shorts, while not improving single maximal jump power, have a significant effect on repetitive vertical jumps by helping to maintain higher mean jumping power.

© 1996 National Strength and Conditioning Association