Journal Logo

You can read the full text of this article if you:

Ovid Member Institutional Access
00019606-200609000-00010ArticleDiagnostic Molecular PathologyDiagnostic Molecular Pathology© 2006 Lippincott Williams & Wilkins, Inc.15September 2006 p 180-185Simple and Effective Determination of Apolipoprotein E Genotypes by Positive/Negative Polymerase Chain Reaction ProductsOriginal ArticlesSeripa, Davide PhD*; Signori, Emanuela† ‡; Gravina, Carolina*; Matera, Maria Giovanna*; Rinaldi, Monica PhD†; Fazio, Vito M. MD, PhD* ‡*Pathology of Aging and Oncology Unit, Research Department, IRCCS “Casa Sollievo della Sofferenza” San Giovanni Rotondo (FG), Italy†CNR, Institute of Neurobiology and Molecular Medicine, Rome, Italy‡Laboratory of Molecular Medicine and Biotechnology, Campus Bio-Medico University School of Medicine, Rome, ItalyThis work follows previous studies supported by PNR Farmaci 2, Tema IX, “Aspetti genetici, biochimici, diagnostici e terapeutici delle malattie rare,” funded by MIUR, Italy. This work was also supported by “Ministero della Salute,” Ricerca Corrente 2003-2005, Linea n. 1 “Malattie cardio e cerebrovascolari.”Reprints: Dr Davide Seripa, PhD, Pathology of Aging and Oncology Unit, Research Department c/o Poliambulatorio “Giovanni Paolo II,” “Casa Sollievo della Sofferenza,” IRCCS, Padre Pio da Pietrelcina Foundation, San Giovanni Rotondo (FG), I-71013 (e-mail: [email protected]).The authors Davide Seripa and Emanuela Signori contributed equally to the work.AbstractSeveral protein and DNA-based methods have been previously described for the identification of apolipoprotein E isoforms or genotypes. However, all of them generate frequently false-positive results. The purpose of this study was to set up a new, simple, and effective method for the analysis of the apoE polymorphism. A total of 1253 subjects previously examined for the apolipoprotein E polymorphism by restriction fragment length polymorphism were reanalyzed by our new method based on Taq DNA polymerase's inability to correctly initiate the replication in the presence of a mismatch at the 3′ end of the primer. We conceived a combination of 4 specific primers in 3 different pairs sharing the same stringent polymerase chain reaction conditions to directly detect the presence/absence of polymerase chain reaction products, and thus reveal the 6 apolipoprotein E genotypes. We confirm our previous results in 1171 subjects, whereas in 82 subjects out of 1253 (about 6%), the results have been reinterpreted. The final analysis revealed a total of 12 homozygotic subjects for the e2 allele (1.0%), 874 homozygotes for the e3 allele (69.8 %), and 8 homozygotes for the e4 allele (0.6 %). The frequence of heterozygotes was 8.7% for the e2/e3 genotype (n=109), 1.4% for the e2/e4 genotype (n=17), and 0.6% for the e3/e4 genotype (n=8). Relative allele frequencies were e2=0.060, e3=0.834, and e4=0.106. We describe a new, simple, unequivocal, and nonexpensive method for the identification of the 6 apoE genotypes.The identification of the apoE genotype by means of accurate and rapid methods is increasingly important in laboratory analysis,1 owing to the prognosis of several complex diseases. ApoE alleles have been related to dyslipidemia2–5 and atherosclerosis,4,6 thus leading to coronary artery disease5,7,8 and ischemic cerebrovascular disease,9–11 Alzheimer disease,12–14 posttraumatic cerebral injury follow-up,15,16 and several other complex diseases.1,17 As a consequence of its pathologic importance, the apoE polymorphism has been investigated extensively in many clinical and research laboratories, with research focusing on the development of a rapid, nonexpensive, and reliable method for the assessment of the apoE genotype.Among several minor polymorphisms,18 2 common T-to-C single nucleotide polymorphisms at positions 3937 (rs429358) and 4075 (rs7412) of the apoE gene sequence (ID:AF261279), at the apoE gene locus (19q13.2), produce the most common apoE polymorphism.18 This polymorphism shows 3 codominant alleles ε2, ε3, and ε4, encoding for the 3 major apoE isoforms, respectively, designated E2, E3, and E4. The E3 isoform shows a cysteine (Cys) at position 112 and an arginine (Arg) at position 158 of the aminoacid sequence (Cys112-Arg158), whereas the E2 isoform shows 2 cysteine (Cys112-Cys158) and E4 isoforms 2 Arg (Arg112-Arg158). Thus, 6 common genotypes and 6 common phenotypes were identified.Several protein-based methods for the determination of apoE isoforms have been described, such as isoelectric focusing (IEF),19 IEF followed by immunoblotting20,21 or immunofixation,22 and 2-dimensional gel electrophoresis.23 Notably, IEF is the gold standard method for the identification and nomenclature of apoE isoforms.24 However, these methods have shown false positives.25 Moreover, an unequivocal identification of apoE phenotype is sometimes problematic owing to the elevated level of glycosilation of the apoE protein, and also to the inefficiency of deglycosylation step preceding the analysis.26 Owing to the discovery of the polymerase chain reaction (PCR),27 several DNA-based methods have been developed, especially as post-PCR approaches.28 These approaches include single strand conformation polymorphism,29,30 hybridization with allele-specific oligonucleotide probes,31 amplification refractory mutation system,32 and restriction fragment length polymorphism (RFLP).33–39 Numerous improvements to these methods have been described.40–46 However, none of them is without difficulties.25,47 Nevertheless, the assessment of a correct apoE genotype in the laboratory is higly important.1,48Thus, in this study we describe a simple and effective method by which the common apoE polymorphism can be identified by a single step-PCR approach without further postamplification steps, thus leading to a direct rapid detection of the 6 common apoE genotypes.MATERIALS AND METHODSSubjectsWe analyzed 1253 subjects, 544 men and 709 women (aged from 22 to 66 y, mean age 37.65±9.17 y) as part of a research program investigating genetic risk factor for cardiovascular disease in Southern Italy. These patients had previously been analyzed for the apoE polymorphism with standard HhaI RFLP analysis. A detailed informed consent regarding the cardiovascular risk related to the apoE polymorphism was administered to all subjects, including the possibility of a mistyping and thus the further communication of the correct genotype.Primer DesignAllele-specific primers (ASP) were designed on the apoE gene sequence described by Nickerson and colleagues18 (AF261279): ASP1 (CGG ACA TGG AGG ACG TGT), ASP2 (CGG ACA TGG AGG ACG TGC), ASP3 (CTG GTA CAC TGC CAG GCG), and ASP4 (CTG GTA CAC TGC CAG GCA).Because of the high GC% of the apoE gene, we limited the primer length at 18 bases. Self-dimer formation analysis showed 1 bad self-dimer for ASP-1 (stability –6.3 kcal/m vs. ΔGmax=−35.2 kcal/m), 2 bad self-dimers for ASP-2 (stability −6.3 and −3.1 kcal/m vs. ΔGmax=−37.0 kcal/m), 3 bad self-dimers for ASP-3 (stability −6.6, −6.2, and −3.6 kcal/m vs. ΔGmax=−36.4 kcal/m), and 1 bad self-dimer for ASP-4 (stability −8.2 kcal/m vs. ΔGmax=–34.8 kcal/m). Pair dimer formation analysis showed 2 dimers for pair ASP-1/ASP-4 and 2 dimers for pair ASP-1/ASP-3 with the same stability (ΔGASP−1/ASP−4=ΔGASP−1/ASP−3=−5.0 kcal/m vs. a ΔGmax of −35.2 kcal/m for the first pair dimer, and ΔGASP−1/ASP−4=ΔGASP−1/ASP−3=−4.6 kcal/m vs. a ΔGmax of −35.2 kcal/m for the second pair dimer), and 1 dimer for pair ASP-2/ASP-3 with a stability of −5.0 kcal/m versus a ΔGmax of −37.0 kcal/m. Hairpin formation analysis showed only 1 hairpin in ASP-3 and 1 hairpin in ASP-4 with the same stability (ΔGASP1=ΔGASP3=−1.4 kcal/m). All primers were analyzed by the Primer Select Ver 5.00 analysis software (DNASTAR, Inc, Madison, Winsconsin). Primers were synthesized by Invitrogen (Invitrogen Corporation, Carlsbad, CA).Preparation of Genomic DNAAfter informed consent, from each patient a 4 mL blood sample was collected in a BD Vacutainer containing 5.4 mg of K2ethylene diaminetetraacetate (Becton-Dickinson, Franklin Lakes, NJ). Samples were immediately frozen or processed for DNA purification. Frozen samples were thawed at 37°C and rapidly processed. Genomic DNA was isolated according to standard methods.49 In brief, erythrocytes and cells lyses were obtained through the addition of 3 vol/vol of 0.9% NaCl-0.1% Nonidet-P40 (Sigma-Aldrich, St Louis, Missouri), to the sample, whereas nuclear lysis and protein digestion was obtained through the addition of 1 vol/vol of 10 mM Tris-HCl (pH 7.5) (Invitrogen Corporation, Carlsbad, CA), 0.3 M NaCl (Carlo Erba, Rodano, Milan, Italy), 1/50 vol/vol proteinase K (Invitrogen Corporation, Carlsbad, CA) and 1/20 vol/vol sodium dodecyl sulfate (Sigma-Aldrich, St Louis, Missouri), in a standard overnight incubation at 37°C. Purification of genomic DNA was obtained by organic extraction of proteins and absolute ethanol DNA precipitation. Each sample was resuspended in 1xTris and ethylene diaminetetraacetate buffers (pH 7.4) (Invitrogen Corporation, Carlsbad, CA) at 50 ng/mL.RFLP AnalysisIn the RFLP analysis, the 2 transitions C3937→T (Arg112→Cys) and C4075→T (Arg158→Cys) forming the apoE polymorphism abolish 2 HhaI restriction sites (GCGC→GTGC) corresponding at codons 112 and 158 of the protein. We used the forward primer described by Houlston et al50 (TCC AAG GAG CTG CAG GCG GCG CA). The reverse primer was modified by Emi et al51 (CCC TCG CGG GCC CCG GCC TGG TAC AC). Primers were synthesized by Invitrogen (Invitrogen Corporation, Carlsbad, CA). A total of 100 ng of genomic DNA was amplified on an Applied Biosystems GeneAmp PCR System 9700 (Applied Biosystem, Foster City, CA). Amplification conditions were 94°C for 2 minutes, followed by 35 cycles at 96°C for 30 seconds, 65°C for 45 seconds, and 72°C for 45 seconds. Reaction buffer included 1.5 U of Platinum Taq DNA polymerase (Invitrogen Corporation, Carlsbad, CA), 10 pmol of each primer, 100 μM NTPs (Invitrogen Corporation, Carlsbad, CA), and 1 mM MgCl2 (Invitrogen Corporation, Carlsbad, CA). Digestion of PCR product with 4 U of HhaI (New England Biolabs, Inc, Beverly, MA) at 37°C overnight produced a typical pattern of fragment on a 4% agarose gel36 (Invitrogen Corporation, Carlsbad, CA), 1 for each of the 6 apoE genotypes.ASP AnalysisFor the specific amplification of apoE alleles, 1 μL of each DNA sample was pipetted into 3 0.5 mL tubes containing 5 pmol/μL of different primer pairs. For the identification of ε2, the primer pair ASP-1/ASP-4 was used. For the identification of ε3, the primer pair ASP-1/ASP-3 was used, whereas for the identification of ε4, the primer pair ASP-2/ASP-3 was used (Fig. 1). The reaction buffer also included 1.5 U of Platinum Taq DNA polymerase (Invitrogen Corporation, Carlsbad, CA), 1 mM of MgCl2 (Invitrogen Corporation, Carlsbad, CA), 100 mM of each dNTP (Invitrogen Corporation, Carlsbad, CA), 5% vol/vol of dimethyl sulfoxide (Sigma-Aldrich, St Louis, Missouri), to a final volume of 25 mL in distilled water. Amplification conditions were 32 cycles at 96°C for 15 minutes, 61°C for 30 minutes, and 72°C for 30 minutes. Electrophoresis analysis was made in 2% agarose gel in 1x1.0 M tris(hydroxymethyl)-aminomethane 0.9 M boric acid 10 mM ethylene diamminotetraacetic acid. The gel was run at constant voltage (80 V) in 0.5 mg/mL ethidium bromide (Bio-Rad, Hercules, CA). To ensure the reproducibility of the method, the analysis was repeated with different enzymes and thermal cyclers. We also amplified genomic DNA isolated with the salting-out method,52 and commercially available kits.JOURNAL/dimp/04.03/00019606-200609000-00010/figure1-10/v/2021-02-17T195928Z/r/image-jpeg Agarose gel electrophoresis of the positive/negative PCR patterns of 6 different subjects showing the 6 apoE genotypes. The presence of hairpins, self-dimers, or primer dimers did not seem to influence the PCR.Sequence AnalysisThe PCR products were purified with the ExoSAP-IT kit (USB Corporation, Cleveland, OH). A 5 μL aliquot of template was added to 2 μL of ExoSAP-IT enzyme, and incubated at 37°C for 15 minutes. A further incubation at 80°C for 15 minutes was made to inactivate ExoSAP-IT. By using both forward and reverse amplification primers, purified PCR products were sequenced with the ABI Prism Big Dye Sequencing Kit Ver 1.1 (Applied Biosystem, Foster City, CA) on an Applied Biosystems GeneAmp PCR System 9700 for a total of 25 cycles at 96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 4 minutes. Sequencing products were purified AutoSeq96 Plates kit (GE Healthcare Bio-Sciences Corp., Piscataway, NJ) and separated on an ABI Prism 310 Genetic Analyzer (Applied Biosystem, Foster City, CA). Data output were analyzed using DNA Sequencing Analysis Software Ver. 3.7 (Applied Biosystem, Foster City, CA).RESULTSTable 1 shows the molecular approach to the identification of the 3 common apoE alleles. The position of primers is unequivocally determined by the polymorphic bases at nucleotide 3937 and 4075 of the apoE gene sequence. In each forward or reverse primer, the last 3′-end base is specific for each of the apoE allele. Thus, for the identification of ε3, the forward primer (ASP-1) shows a timine at the 3′-end, whereas the reverse primer shows a guanine (primer ASP-3). This ASP-1/ASP-3 pair amplifies ε3. In the presence of the C4075→T transition in ε2, we used the same forward primer ASP-1 as in the identification of ε3, but we used a reverse primer showing an adenine (primer ASP-4) at the 3′-end. Thus this ASP-1/ASP-4 pair amplifies ε2. Similarly, in the presence of the T3937→C transition in ε4, the reverse primer was the same as that used for the identification of ε3 (ASP-3), whereas the forward primer shows a cysteine (primer ASP-2) at the 3′-end. In this way, ASP-2/ASP-3 pair identifies ε4.JOURNAL/dimp/04.03/00019606-200609000-00010/table1-10/v/2021-02-17T195928Z/r/image-tiff Allele-specific Primers for the Identification of the 3 apoE AllelesFor the identification of an unknown apoE genotype, we amplified by PCR the same DNA in 3 distinct tubes by PCR, each containing 1 of the 3 pairs of ASP-1/ASP-3, ASP-1/ASP-4, and ASP-2/ASP-3. To permit simultaneous amplification of the 3 combinations of primers, we also fixed the primers’ length to 18 bases, thus giving the same amplified fragment of 173 bp. In the PCR, only the exactly-matched pair results in a PCR product. The presence of 1 mismatch at the 3′-end of a forward or reverse primer prevents the correct annealing of the 3′ primer-end, and hence the uncorrect initiation of the replication by the enzyme (Table 1). Figure 1 shows a schematic representation of the analysis, with 6 subjects displaying the common apoE genotypes. DNA amplification patterns must be interpreted according to Table 2. After the PCR, an homozygote E3/E3 showed the 173 bp PCR product only in the ASP-1/ASP-3 pair-containing tubes, and not in the ASP-1/ASP-4 and ASP-2/ASP-3 pairs. In contrast, the homozygotes E2/E2 and the E4/E4 gave the PCR product only in the ASP-1/ASP-4 (not for ASP-1/ASP-3 and ASP-2/ASP-3), and ASP-2/ASP-3 (not for ASP-1/ASP-3, and ASP-1/ASP-4) pair-containing tubes, respectively. Similarly, in the heterozygotes E2/E3, E2/E4, and E3/E4, a combination of the previously PCR pattern product made it possible to identify the corresponding genotype. The presence of primer dimers and self-complementary structure did not seem to influence the amplification.JOURNAL/dimp/04.03/00019606-200609000-00010/table2-10/v/2021-02-17T195928Z/r/image-tiff Positive/negative PCR Pattern for the Identification of the 6 apoE Genotypes (see also Fig. 1)With this method we have reanalyzed for the apoE genotypes a sample of 1253 subjects, previously analyzed with a modified HhaI restriction genotyping method. We confirmed previous results in 1171 subjects, whereas, as confirmed by sequence analysis, in 82 subjects (about 6%), the results have been reinterpreted. Final analysis revealed a total of 12 homozygotic subjects for ε2 (1%), 874 homozygotes for ε3 (69.8%), and 8 homozygotes for ε4 (0.6%). The frequency of heterozygotes was 8.7% for the ε2/ε3 genotype (n=109), 1.4% for the ε2/ε4 genotype (n=17), and 0.6% for the ε3/ε4 genotype (n=8). Relative allele frequencies were ε2=0.060, ε3=0.834, and ε4=0.106.DISCUSSIONDespite the identification of apoE genotypes as genetic factors contributing significantly to several complex diseases (eg, dyslipidemia, atherosclerosis, Alzheimer disease, etc.), methods for apoE genotyping remain time-consuming, expensive, labor-intensive, and not totally reliable. IEF protein-based method has been the most common choice for apoE phenotyping in a clinic laboratory. In 1979, Warnick and colleagues53 first described a gel IEF procedure for apoE phenotyping. However, this method has sometimes proved to be problematic for an unequivocal identification of apoE genotypes. In 1991, Snowden and colleagues26 showed a clear difference between IEF-phenotyping and PCR-based genotyping in 95 noninsulin dependent diabetic patients. They justified differences in allele frequencies owing to posttranslational modification of apoE. The same year, Wenham and colleagues described a discrepancy between IEF-based phenotyping and DNA-based genotyping observed in 15% of the analyzed patients.35 It is noteworthy that systematic misclassification of certain apoE alleles by this method might affect the assumed association of this polymorphism with the complex diseases mentioned above. In the following year, several modifications were made to IEF to overcome this problem and to increase specificity (but not sensitivity), including IEF of delipidated serum followed by immunoblotting,20 immunofixation,22 and pretreatment of plasma with neuraminidase.23 Nonetheless, these methods have remained most widely used, despite the disadvantages cited above. An additional drawback of such methods is their inability to identify apoE alleles precisely. To avoid these difficulties in phenotyping apoE isoforms, several PCR-based methods have been developed but without any clear improvement. Cost and over-complexity continue to pose problems, as does the dependency of these improvements on the yet unavoidable post-PCR steps.30–48In our new method proposed here, only 3 PCRs for each patient are required. The amplifications are conducted by different primers that work under the same conditions without any post-PCR step. A simple detection for the presence/absence of PCR products permits the irrefutable identification of the 6 apoE genotypes.REFERENCES1. Siest G, Pillot T, Régis-Bailly T, et al. Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem. 1995;41:1068–1086.[Context Link][CrossRef][Medline Link]2. Dammerman M, Breslow JL. Genetic basis of lipoprotein disorders. Circulation. 1995;91:505–512.[Context Link][Full Text][CrossRef][Medline Link]3. Walden CC, Hegele RA. Apolipoprotein E in hyperlipidemia. Ann Intern Med. 1994;120:1026–1036.[Context Link][Full Text][CrossRef][Medline Link]4. Davignon J. Apolipoprotein E polymorphism, dyslipidemia and atherosclerosis. Nutr Metab Cardiovasc Dis. 1991;1:53–56.[Context Link]5. Wilson PF, Myers RH, Larson MG, et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA. 1994;272:1666–1671.[Context Link][Full Text][CrossRef][Medline Link]6. Davignon J, Gregg RE, Sing F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 1988;8:1–21. Wilson PF, Myers RH, Larson MG, et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA. 1994;272:1666–1671.[Context Link]7. Tiret L, de Knijff P, Menzel H-J, et al. ApoE polymorphism and predisposition to coronary heart disease in youths of different european populations. The EARS study. Arterioscler Thromb. 1994;14:1617–1624.[Context Link][Full Text][CrossRef][Medline Link]8. De Knijff P, Havekes LM. Apolipoprotein E as a risk factor for coronary heart disease: a genetic and molecular biology approach. Curr Opin Lipidol. 1996;7:59–63.[Context Link][Full Text][CrossRef][Medline Link]9. De Graba TJ, Penix L. Genetics of ischemic stroke. Curr Opin Neurol. 1995;8:24–29.[Context Link][Full Text][CrossRef][Medline Link]10. Margaglione M, Seripa D, Gravina C, et al. Prevalence of apolipoprotein E alleles in healthy subjects and survivors of ischemic stroke: and Italian case-control study. Stroke. 1998;29:399–403.[Context Link][Full Text][CrossRef][Medline Link]11. Elbaz A, Amarenco P. Genetic susceptibility and ischemic stroke. Curr Opin Neurol. 1999;12:47–55.[Context Link][Full Text][CrossRef][Medline Link]12. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to b-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad USA. 1993;90:1977–1981.[Context Link][CrossRef][Medline Link]13. Charter-Harlin M-C, Parfitt M, Legrain S, et al. Apolipoprotein E, e4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer's disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet. 1994;3:569–574.[Context Link][CrossRef][Medline Link]14. Masullo C, Daniele A, Seripa D, et al. Apolipoprotein E genotype in sporadic early- and late-onset Alzheimer's disease. Dement Geriatr Cogn Disord. 1998;9:121–125.[Context Link][CrossRef][Medline Link]15. Teasdale GM, Nicoll JA, Murray G, et al. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet. 1997;350:1069–1071.[Context Link][Full Text][CrossRef][Medline Link]16. Jordan BD, Relkin NR, Ravdin LD, et al. Apolipoprotein E ε4 associated with chronic traumatic brain injury in boxing. J Am Med Ass. 1997;278:136–140.[Context Link][Full Text][CrossRef][Medline Link]17. Smith JD. Apolipoprotein E4: an allele associated with many diseases. Ann Med. 2000;32:118–127.[Context Link][Full Text][CrossRef][Medline Link]18. Nickerson DA, Taylor SL, Fullerton SM, et al. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 2000;10:1532–1545.[Context Link][CrossRef][Medline Link]19. Bouthillier D, Sing CF, Davignon J. Apolipoprotein E phenotyping with a single gel method: application to the study of informative mathings. J Lipid Res. 1983;24:1060–1069.[Context Link][CrossRef][Medline Link]20. Kakatoa S, Paidi M, Howard BV. Simplified isoelectric focusing/immunoblotting determination of apolipoprotein E phenotype. Clin Chem. 1994;40:11–13.[Context Link]21. Steinmetz A. Phenotyping of human apolipoprotein E from whole blood plasma by immunoblotting. J Lipid Res. 1987;28:1364–1370.[Context Link][CrossRef][Medline Link]22. Hackler R, Schafer JR, Motzny S, et al. Rapid determination of apolipoprotein E phenotypes from whole plasma by automated isoelectric focusing using PhastSystem and immunofixation. J Lipid Res. 1994;35:153–158.[Context Link][CrossRef][Medline Link]23. Golaz O, Sanchez JC, James RW, et al. Phenotyping of apolipoprotein E using immobilized pH gradient gels for one-dimensional and two-dimensional separations. Electrophoresis. 1995;16:1184–1186.[Context Link][CrossRef][Medline Link]24. Zannis VI, Breslow JL, Utermann G, et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res. 1982;23:911–914.[Context Link][CrossRef][Medline Link]25. Wenham PR, Sedky A, Spooner RJ. Apolipoprotein E phenotyping: a word of caution. Ann Clin Biochem. 1991;28:599–605.[Context Link][CrossRef][Medline Link]26. Snowden C, Houlston RS, Arif MH, et al. Disparity between apolipoprotein E phenotypes and genotypes (as determined by polymerase chain reaction and oligonucleotide probes) in patients with non-insulin-dependent diabetes mellitus. Clin Chim Acta. 1991;196:49–58.[Context Link][CrossRef][Medline Link]27. Saiki RK, Bugawan TL, Horn GT, et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324:163–166.[Context Link][CrossRef][Medline Link]28. Maekawa B, Cole TG, Seip RL, et al. Apolipoprotein E genotyping methods for the clinical laboratory. J Clin Lab Anal. 1995;9:63–69.[Context Link][CrossRef][Medline Link]29. Tsai MY, Suess P, Schwichtenberg K, et al. Determination of apolipoprotein E genotypes by single-strand conformational polymorphism. Clin Chem. 1993;39:2121–2124.[Context Link][CrossRef][Medline Link]30. Aozaki R, Kawaguchi R, Ogasa U, et al. Rapid identification of the common apo E isoforms genotype using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Mol Cell Probes. 1994;8:51–54.[Context Link][CrossRef][Medline Link]31. Smeets HJ, Poddighe J, Stuyt PM, et al. Identification of apolipoprotein E polymorphism by using synthetic oligonucleotides. J Lipid Res. 1988;29:1231–1237.[Context Link][CrossRef][Medline Link]32. Wenham PR, Newton CR, Price WH. Analysis of apolipoprotein E genotypes by the amplification refractory mutation system. Clin Chem. 1991;37:241–244.[Context Link][CrossRef][Medline Link]33. James E, Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31:545–548.[Context Link][CrossRef][Medline Link]34. Kontula K, Aalto-Setälä K, Kuusi T, et al. Apolipoprotein E polymorphism determined by restriction enzyme analysis of DNA amplified by polymerase chain reaction: convenient alternative to phenotyping by isoelectric focusing. Clin Chem. 1990;36:2087–2092.[Context Link][CrossRef][Medline Link]35. Wenham PR, Price WH, Blundell G. Apolipoprotein E genotyping by one-stage PCR. Lancet. 1991;337:1158–1159.[Context Link][CrossRef][Medline Link]36. Appel E, Eisenberg S, Roitelman J. Improved PCR amplification/HhaI digestion for unambiguous determination of apolipoprotein E alleles. Clin Chem. 1995;41:187–190.[Context Link][CrossRef][Medline Link]37. Dallinga-Thie GM, van Linde-Sibenius Trip M, Kock LAW, et al. Apolipoprotein E2/E3/E4 genotyping with agarose gels. Clin Chem. 1995;41:73–75.[Context Link][CrossRef][Medline Link]38. Reymer WA, Groenmeyer BE, van de Burg R, et al. Apolipoprotein E genotyping on agarose gel. Clin Chem. 1995;41:1046–1047.[Context Link][CrossRef][Medline Link]39. Zivelin A, Rosemberg N, Peretz H, et al. Improved method for genotyping apolipoprotein E polymorphisms by a PCR-based assay simultaneously utilizing two distinct restriction enztymes. Clin Chem. 1997;43:1657–1659.[Context Link][Full Text][CrossRef][Medline Link]40. Bolla MK, Haddad L, Humphries SE, et al. High-throughput method for determination of apolipoprotein E genotypes with use of restriction digestion analysis by microplate array diagonal gel electrophoresis. Clin Chem. 1995;41:1599–1604.[Context Link][CrossRef][Medline Link]41. Schlenck A, Bohnet K, Aguillon D, et al. High sensitivity of laser-induced fluorescence detection in capillary gel electrophoresis for accurate apolipoprotein E genotyping. Biotechniques. 1997;22:736–742.[Context Link][CrossRef][Medline Link]42. Baron H, Fung S, Aydin A, et al. Oligonucleotide ligation assay for detection of apolipoprotein E polymorphisms. Clin Chem. 1997;43:1984–4986.[Context Link][Full Text][CrossRef][Medline Link]43. Sell SM, Ren K. Automated capillary electrophoresis in the genotyping of apolipoprotein E. Genomics. 1997;46:163–164.[Context Link][CrossRef][Medline Link]44. Kohler T, Rost AK, Purschwitz K, et al. Genotyping of human apolipoprotein E alleles by the new qualitative, microplate-based CASSI-detection assay. Biotechniques. 1998;25:80–85.[Context Link][CrossRef][Medline Link]45. Bernard PS, Pritham GH, Wittwer CT. Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping. Anal Biochem. 1999;273:221–228.[Context Link][CrossRef][Medline Link]46. Marrazza G, Chiti G, Mascini M, et al. Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR. Clin Chem. 2000;46:31–37.[Context Link][Full Text][CrossRef][Medline Link]47. Saunders AM, Mulette C, Welsh-Bohmer KA, et al. Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer's disease. Lancet. 1996;348:90–93.[Context Link][Full Text][CrossRef][Medline Link]48. Mayeux R, Saunders AM, Shea S, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer disease. The Alzheimer's disease centers consortium on apolipoprotein E and Alzheimer's disease. N Engl J Med. 1998;338:506–511.[Context Link][Full Text][CrossRef][Medline Link]49. Kirby KS. A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem J. 1957;66:495–504.[Context Link][CrossRef][Medline Link]50. Houlston RS, Snowden C, Green F, et al. Apolipoprotein (apo) E genotypes by polymerase chain reaction and allele-specific oligonucleotide probes: no detectable linkage disequilibrium between apo E and apo CII. Hum Genet. 1989;83:364–368.[Context Link][CrossRef][Medline Link]51. Emi M, Wu LL, Robertson MA, et al. Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics. 1988;3:373–379.[Context Link][CrossRef][Medline Link]52. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res. 1988;16:1215.[Context Link][CrossRef][Medline Link]53. Warnick GR, Mayfield C, Alberts JJ, et al. Gel isoelectric focusing methods for specific diagnosis of familial hyperlipoproteinemia type 3. Clin Chem. 1979;25:279–284.[Context Link][CrossRef][Medline Link]apolipoprotein E; polymorphism; genotyping; allele-specific PCR; primer mismatch00019606-200609000-0001000007670_1998_29_399_anonymous_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING))|11065404||ovftdb|SL0000767019982939911065404citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING[Full Text]00007670-199802000-0001300019606-200609000-0001000007670_1998_29_399_anonymous_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING))|11065213||ovftdb|SL0000767019982939911065213citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING[CrossRef]10.1161%2F01.STR.29.2.39900019606-200609000-0001000007670_1998_29_399_anonymous_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING))|11065405||ovftdb|SL0000767019982939911065405citation_FROM_JRF_ID_d3687e798_citationRF_FLOATING[Medline Link]947288000019606-200609000-0001000019052_1999_12_47_elbaz_susceptibility_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING))|11065404||ovftdb|SL000190521999124711065404citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING[Full Text]00019052-199902000-0000900019606-200609000-0001000019052_1999_12_47_elbaz_susceptibility_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING))|11065213||ovftdb|SL000190521999124711065213citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING[CrossRef]10.1097%2F00019052-199902000-0000900019606-200609000-0001000019052_1999_12_47_elbaz_susceptibility_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING))|11065405||ovftdb|SL000190521999124711065405citation_FROM_JRF_ID_d3687e833_citationRF_FLOATING[Medline Link]1009788500019606-200609000-0001000006702_1993_90_1977_strittmatter_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e860_citationRF_FLOATING))|11065213||ovftdb|SL00006702199390197711065213citation_FROM_JRF_ID_d3687e860_citationRF_FLOATING[CrossRef]10.1073%2Fpnas.90.5.197700019606-200609000-0001000006702_1993_90_1977_strittmatter_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e860_citationRF_FLOATING))|11065405||ovftdb|SL00006702199390197711065405citation_FROM_JRF_ID_d3687e860_citationRF_FLOATING[Medline Link]844661700019606-200609000-0001000008563_1994_3_569_chartier_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e894_citationRF_FLOATING))|11065213||ovftdb|SL000085631994356911065213citation_FROM_JRF_ID_d3687e894_citationRF_FLOATING[CrossRef]10.1093%2Fhmg%2F3.4.56900019606-200609000-0001000008563_1994_3_569_chartier_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e894_citationRF_FLOATING))|11065405||ovftdb|SL000085631994356911065405citation_FROM_JRF_ID_d3687e894_citationRF_FLOATING[Medline Link]806930000019606-200609000-0001000062875_1998_9_121_masullo_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e928_citationRF_FLOATING))|11065213||ovftdb|SL000628751998912111065213citation_FROM_JRF_ID_d3687e928_citationRF_FLOATING[CrossRef]10.1159%2F00001703400019606-200609000-0001000062875_1998_9_121_masullo_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e928_citationRF_FLOATING))|11065405||ovftdb|SL000628751998912111065405citation_FROM_JRF_ID_d3687e928_citationRF_FLOATING[Medline Link]962199700019606-200609000-0001000000542-200304000-00002|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING))|11065404||ovftdb|SL11065404citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING[Full Text]00005531-199710110-0001000019606-200609000-0001000000542-200304000-00002|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING))|11065213||ovftdb|SL11065213citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING[CrossRef]10.1016%2FS0140-6736%2897%2904318-300019606-200609000-0001000000542-200304000-00002|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING))|11065405||ovftdb|SL11065405citation_FROM_JRF_ID_d3687e962_citationRF_FLOATING[Medline Link]1021354900019606-200609000-0001000005407_1997_278_136_jordan_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING))|11065404||ovftdb|SL00005407199727813611065404citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING[Full Text]00005407-199707090-0003300019606-200609000-0001000005407_1997_278_136_jordan_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING))|11065213||ovftdb|SL00005407199727813611065213citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING[CrossRef]10.1001%2Fjama.1997.0355002006804000019606-200609000-0001000005407_1997_278_136_jordan_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING))|11065405||ovftdb|SL00005407199727813611065405citation_FROM_JRF_ID_d3687e996_citationRF_FLOATING[Medline Link]921452900019606-200609000-0001000002099_2000_32_118_smith_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING))|11065404||ovftdb|SL0000209920003211811065404citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING[Full Text]00002099-200003000-0000600019606-200609000-0001000002099_2000_32_118_smith_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING))|11065213||ovftdb|SL0000209920003211811065213citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING[CrossRef]10.3109%2F0785389000901176100019606-200609000-0001000002099_2000_32_118_smith_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING))|11065405||ovftdb|SL0000209920003211811065405citation_FROM_JRF_ID_d3687e1031_citationRF_FLOATING[Medline Link]1076640300019606-200609000-0001000008495_2002_10_1532_nickerson_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1053_citationRF_FLOATING))|11065213||ovftdb|SL00008495200210153211065213citation_FROM_JRF_ID_d3687e1053_citationRF_FLOATING[CrossRef]10.1101%2Fgr.14690000019606-200609000-0001000008495_2002_10_1532_nickerson_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1053_citationRF_FLOATING))|11065405||ovftdb|SL00008495200210153211065405citation_FROM_JRF_ID_d3687e1053_citationRF_FLOATING[Medline Link]1104215100019606-200609000-0001000004973_1983_24_1060_bouthillier_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1087_citationRF_FLOATING))|11065213||ovftdb|SL00004973198324106011065213citation_FROM_JRF_ID_d3687e1087_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2937920-700019606-200609000-0001000004973_1983_24_1060_bouthillier_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1087_citationRF_FLOATING))|11065405||ovftdb|SL00004973198324106011065405citation_FROM_JRF_ID_d3687e1087_citationRF_FLOATING[Medline Link]663123400019606-200609000-0001000003030_1995_41_1068_siest_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e530_citationRF_FLOATING))|11065213||ovftdb|SL00003030199541106811065213citation_FROM_JRF_ID_d3687e530_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F41.8.106800019606-200609000-0001000003030_1995_41_1068_siest_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e530_citationRF_FLOATING))|11065405||ovftdb|SL00003030199541106811065405citation_FROM_JRF_ID_d3687e530_citationRF_FLOATING[Medline Link]762808200019606-200609000-0001000004973_1987_28_1364_steinmetz_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1151_citationRF_FLOATING))|11065213||ovftdb|SL00004973198728136411065213citation_FROM_JRF_ID_d3687e1151_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2938599-000019606-200609000-0001000004973_1987_28_1364_steinmetz_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1151_citationRF_FLOATING))|11065405||ovftdb|SL00004973198728136411065405citation_FROM_JRF_ID_d3687e1151_citationRF_FLOATING[Medline Link]343006500019606-200609000-0001000004973_1994_35_153_hackler_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1173_citationRF_FLOATING))|11065213||ovftdb|SL0000497319943515311065213citation_FROM_JRF_ID_d3687e1173_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2940122-100019606-200609000-0001000004973_1994_35_153_hackler_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1173_citationRF_FLOATING))|11065405||ovftdb|SL0000497319943515311065405citation_FROM_JRF_ID_d3687e1173_citationRF_FLOATING[Medline Link]813871700019606-200609000-0001000003621_1995_16_1184_golaz_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1208_citationRF_FLOATING))|11065213||ovftdb|SL00003621199516118411065213citation_FROM_JRF_ID_d3687e1208_citationRF_FLOATING[CrossRef]10.1002%2Felps.1150160119600019606-200609000-0001000003621_1995_16_1184_golaz_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1208_citationRF_FLOATING))|11065405||ovftdb|SL00003621199516118411065405citation_FROM_JRF_ID_d3687e1208_citationRF_FLOATING[Medline Link]749816300019606-200609000-0001000004973_1982_23_911_zannis_nomenclature_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1242_citationRF_FLOATING))|11065213||ovftdb|SL0000497319822391111065213citation_FROM_JRF_ID_d3687e1242_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2938094-900019606-200609000-0001000004973_1982_23_911_zannis_nomenclature_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1242_citationRF_FLOATING))|11065405||ovftdb|SL0000497319822391111065405citation_FROM_JRF_ID_d3687e1242_citationRF_FLOATING[Medline Link]713085900019606-200609000-0001000000582_1991_28_599_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1276_citationRF_FLOATING))|11065213||ovftdb|SL0000058219912859911065213citation_FROM_JRF_ID_d3687e1276_citationRF_FLOATING[CrossRef]10.1177%2F00045632910280061000019606-200609000-0001000000582_1991_28_599_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1276_citationRF_FLOATING))|11065405||ovftdb|SL0000058219912859911065405citation_FROM_JRF_ID_d3687e1276_citationRF_FLOATING[Medline Link]177681100019606-200609000-0001000003031_1991_196_49_snowden_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1308_citationRF_FLOATING))|11065213||ovftdb|SL0000303119911964911065213citation_FROM_JRF_ID_d3687e1308_citationRF_FLOATING[CrossRef]10.1016%2F0009-8981%2891%2990207-S00019606-200609000-0001000003031_1991_196_49_snowden_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1308_citationRF_FLOATING))|11065405||ovftdb|SL0000303119911964911065405citation_FROM_JRF_ID_d3687e1308_citationRF_FLOATING[Medline Link]202205800019606-200609000-0001000006056_1986_324_163_saiki_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1342_citationRF_FLOATING))|11065213||ovftdb|SL00006056198632416311065213citation_FROM_JRF_ID_d3687e1342_citationRF_FLOATING[CrossRef]10.1038%2F324163a000019606-200609000-0001000006056_1986_324_163_saiki_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1342_citationRF_FLOATING))|11065405||ovftdb|SL00006056198632416311065405citation_FROM_JRF_ID_d3687e1342_citationRF_FLOATING[Medline Link]378538200019606-200609000-0001000005179_1995_9_63_maekawa_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1376_citationRF_FLOATING))|11065213||ovftdb|SL00005179199596311065213citation_FROM_JRF_ID_d3687e1376_citationRF_FLOATING[CrossRef]10.1002%2Fjcla.186009011200019606-200609000-0001000005179_1995_9_63_maekawa_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1376_citationRF_FLOATING))|11065405||ovftdb|SL00005179199596311065405citation_FROM_JRF_ID_d3687e1376_citationRF_FLOATING[Medline Link]772277500019606-200609000-0001000003030_1993_39_2121_tsai_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1411_citationRF_FLOATING))|11065213||ovftdb|SL00003030199339212111065213citation_FROM_JRF_ID_d3687e1411_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F39.10.212100019606-200609000-0001000003030_1993_39_2121_tsai_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1411_citationRF_FLOATING))|11065405||ovftdb|SL00003030199339212111065405citation_FROM_JRF_ID_d3687e1411_citationRF_FLOATING[Medline Link]840339600019606-200609000-0001000003017_1995_91_505_dammerman_lipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING))|11065404||ovftdb|SL0000301719959150511065404citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING[Full Text]00003017-199501150-0003400019606-200609000-0001000003017_1995_91_505_dammerman_lipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING))|11065213||ovftdb|SL0000301719959150511065213citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING[CrossRef]10.1161%2F01.CIR.91.2.50500019606-200609000-0001000003017_1995_91_505_dammerman_lipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING))|11065405||ovftdb|SL0000301719959150511065405citation_FROM_JRF_ID_d3687e564_citationRF_FLOATING[Medline Link]780525600019606-200609000-0001000005938_1994_8_51_aozaki_identification_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1445_citationRF_FLOATING))|11065213||ovftdb|SL00005938199485111065213citation_FROM_JRF_ID_d3687e1445_citationRF_FLOATING[CrossRef]10.1006%2Fmcpr.1994.100700019606-200609000-0001000005938_1994_8_51_aozaki_identification_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1445_citationRF_FLOATING))|11065405||ovftdb|SL00005938199485111065405citation_FROM_JRF_ID_d3687e1445_citationRF_FLOATING[Medline Link]791320600019606-200609000-0001000004973_1988_29_1231_smeets_oligonucleotides_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1479_citationRF_FLOATING))|11065213||ovftdb|SL00004973198829123111065213citation_FROM_JRF_ID_d3687e1479_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2938459-500019606-200609000-0001000004973_1988_29_1231_smeets_oligonucleotides_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1479_citationRF_FLOATING))|11065405||ovftdb|SL00004973198829123111065405citation_FROM_JRF_ID_d3687e1479_citationRF_FLOATING[Medline Link]318352700019606-200609000-0001000003030_1991_37_241_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1513_citationRF_FLOATING))|11065213||ovftdb|SL0000303019913724111065213citation_FROM_JRF_ID_d3687e1513_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F37.2.24100019606-200609000-0001000003030_1991_37_241_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1513_citationRF_FLOATING))|11065405||ovftdb|SL0000303019913724111065405citation_FROM_JRF_ID_d3687e1513_citationRF_FLOATING[Medline Link]199333200019606-200609000-0001000004973_1990_31_545_hixon_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1545_citationRF_FLOATING))|11065213||ovftdb|SL0000497319903154511065213citation_FROM_JRF_ID_d3687e1545_citationRF_FLOATING[CrossRef]10.1016%2FS0022-2275%2820%2943176-100019606-200609000-0001000004973_1990_31_545_hixon_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1545_citationRF_FLOATING))|11065405||ovftdb|SL0000497319903154511065405citation_FROM_JRF_ID_d3687e1545_citationRF_FLOATING[Medline Link]234181300019606-200609000-0001000003030_1990_36_2087_kontula_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1577_citationRF_FLOATING))|11065213||ovftdb|SL00003030199036208711065213citation_FROM_JRF_ID_d3687e1577_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F36.12.208700019606-200609000-0001000003030_1990_36_2087_kontula_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1577_citationRF_FLOATING))|11065405||ovftdb|SL00003030199036208711065405citation_FROM_JRF_ID_d3687e1577_citationRF_FLOATING[Medline Link]225335100019606-200609000-0001000005531_1991_337_1158_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1612_citationRF_FLOATING))|11065213||ovftdb|SL000055311991337115811065213citation_FROM_JRF_ID_d3687e1612_citationRF_FLOATING[CrossRef]10.1016%2F0140-6736%2891%2992823-K00019606-200609000-0001000005531_1991_337_1158_wenham_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1612_citationRF_FLOATING))|11065405||ovftdb|SL000055311991337115811065405citation_FROM_JRF_ID_d3687e1612_citationRF_FLOATING[Medline Link]167403000019606-200609000-0001000003030_1995_41_187_appel_amplificationhhai_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1644_citationRF_FLOATING))|11065213||ovftdb|SL0000303019954118711065213citation_FROM_JRF_ID_d3687e1644_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F41.2.18700019606-200609000-0001000003030_1995_41_187_appel_amplificationhhai_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1644_citationRF_FLOATING))|11065405||ovftdb|SL0000303019954118711065405citation_FROM_JRF_ID_d3687e1644_citationRF_FLOATING[Medline Link]787476900019606-200609000-0001000003030_1995_41_73_dallinga_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1676_citationRF_FLOATING))|11065213||ovftdb|SL000030301995417311065213citation_FROM_JRF_ID_d3687e1676_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F41.1.7300019606-200609000-0001000003030_1995_41_73_dallinga_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1676_citationRF_FLOATING))|11065405||ovftdb|SL000030301995417311065405citation_FROM_JRF_ID_d3687e1676_citationRF_FLOATING[Medline Link]781308400019606-200609000-0001000003030_1995_41_1046_reymer_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1710_citationRF_FLOATING))|11065213||ovftdb|SL00003030199541104611065213citation_FROM_JRF_ID_d3687e1710_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F41.7.104600019606-200609000-0001000003030_1995_41_1046_reymer_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1710_citationRF_FLOATING))|11065405||ovftdb|SL00003030199541104611065405citation_FROM_JRF_ID_d3687e1710_citationRF_FLOATING[Medline Link]760068900019606-200609000-0001000003030_1997_43_1657_zivelin_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING))|11065404||ovftdb|SL00003030199743165711065404citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING[Full Text]00003030-199709000-0001800019606-200609000-0001000003030_1997_43_1657_zivelin_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING))|11065213||ovftdb|SL00003030199743165711065213citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F43.9.165700019606-200609000-0001000003030_1997_43_1657_zivelin_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING))|11065405||ovftdb|SL00003030199743165711065405citation_FROM_JRF_ID_d3687e1744_citationRF_FLOATING[Medline Link]929995000019606-200609000-0001000000605_1994_120_1026_walden_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING))|11065404||ovftdb|SL000006051994120102611065404citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING[Full Text]00000605-199406150-0000900019606-200609000-0001000000605_1994_120_1026_walden_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING))|11065213||ovftdb|SL000006051994120102611065213citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING[CrossRef]10.7326%2F0003-4819-120-12-199406150-0000900019606-200609000-0001000000605_1994_120_1026_walden_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING))|11065405||ovftdb|SL000006051994120102611065405citation_FROM_JRF_ID_d3687e591_citationRF_FLOATING[Medline Link]818513400019606-200609000-0001000003030_1995_41_1599_bolla_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1778_citationRF_FLOATING))|11065213||ovftdb|SL00003030199541159911065213citation_FROM_JRF_ID_d3687e1778_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F41.11.159900019606-200609000-0001000003030_1995_41_1599_bolla_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1778_citationRF_FLOATING))|11065405||ovftdb|SL00003030199541159911065405citation_FROM_JRF_ID_d3687e1778_citationRF_FLOATING[Medline Link]758654900019606-200609000-0001000002112_1997_22_736_schlenck_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1813_citationRF_FLOATING))|11065213||ovftdb|SL0000211219972273611065213citation_FROM_JRF_ID_d3687e1813_citationRF_FLOATING[CrossRef]10.2144%2F97224rr0300019606-200609000-0001000002112_1997_22_736_schlenck_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1813_citationRF_FLOATING))|11065405||ovftdb|SL0000211219972273611065405citation_FROM_JRF_ID_d3687e1813_citationRF_FLOATING[Medline Link]910562600019606-200609000-0001000003030_1997_43_1984_baron_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING))|11065404||ovftdb|SL00003030199743198411065404citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING[Full Text]00003030-199710000-0002800019606-200609000-0001000003030_1997_43_1984_baron_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING))|11065213||ovftdb|SL00003030199743198411065213citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F43.10.198400019606-200609000-0001000003030_1997_43_1984_baron_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING))|11065405||ovftdb|SL00003030199743198411065405citation_FROM_JRF_ID_d3687e1847_citationRF_FLOATING[Medline Link]934202300019606-200609000-0001000004191_1997_46_163_sell_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1881_citationRF_FLOATING))|11065213||ovftdb|SL0000419119974616311065213citation_FROM_JRF_ID_d3687e1881_citationRF_FLOATING[CrossRef]10.1006%2Fgeno.1997.498500019606-200609000-0001000004191_1997_46_163_sell_electrophoresis_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1881_citationRF_FLOATING))|11065405||ovftdb|SL0000419119974616311065405citation_FROM_JRF_ID_d3687e1881_citationRF_FLOATING[Medline Link]940307500019606-200609000-0001000002112_1998_25_80_kohler_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1908_citationRF_FLOATING))|11065213||ovftdb|SL000021121998258011065213citation_FROM_JRF_ID_d3687e1908_citationRF_FLOATING[CrossRef]10.2144%2F98251st0300019606-200609000-0001000002112_1998_25_80_kohler_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1908_citationRF_FLOATING))|11065405||ovftdb|SL000021121998258011065405citation_FROM_JRF_ID_d3687e1908_citationRF_FLOATING[Medline Link]966898000019606-200609000-0001000000527_1999_273_221_bernard_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1942_citationRF_FLOATING))|11065213||ovftdb|SL00000527199927322111065213citation_FROM_JRF_ID_d3687e1942_citationRF_FLOATING[CrossRef]10.1006%2Fabio.1999.421700019606-200609000-0001000000527_1999_273_221_bernard_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1942_citationRF_FLOATING))|11065405||ovftdb|SL00000527199927322111065405citation_FROM_JRF_ID_d3687e1942_citationRF_FLOATING[Medline Link]1046949300019606-200609000-0001000003030_2000_46_31_marrazza_electrochemical_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING))|11065404||ovftdb|SL000030302000463111065404citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING[Full Text]00003030-200001000-0000500019606-200609000-0001000003030_2000_46_31_marrazza_electrochemical_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING))|11065213||ovftdb|SL000030302000463111065213citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F46.1.3100019606-200609000-0001000003030_2000_46_31_marrazza_electrochemical_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING))|11065405||ovftdb|SL000030302000463111065405citation_FROM_JRF_ID_d3687e1974_citationRF_FLOATING[Medline Link]1062056900019606-200609000-0001000000816-200506000-00018|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING))|11065404||ovftdb|SL11065404citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING[Full Text]00005531-199607130-0001100019606-200609000-0001000000816-200506000-00018|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING))|11065213||ovftdb|SL11065213citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING[CrossRef]10.1016%2FS0140-6736%2896%2901251-200019606-200609000-0001000000816-200506000-00018|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING))|11065405||ovftdb|SL11065405citation_FROM_JRF_ID_d3687e2009_citationRF_FLOATING[Medline Link]867672300019606-200609000-0001000006024_1998_338_506_mayeux_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING))|11065404||ovftdb|SL00006024199833850611065404citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING[Full Text]00006024-199802190-0000400019606-200609000-0001000006024_1998_338_506_mayeux_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING))|11065213||ovftdb|SL00006024199833850611065213citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING[CrossRef]10.1056%2FNEJM19980219338080400019606-200609000-0001000006024_1998_338_506_mayeux_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING))|11065405||ovftdb|SL00006024199833850611065405citation_FROM_JRF_ID_d3687e2043_citationRF_FLOATING[Medline Link]946846700019606-200609000-0001000001005_1957_66_495_kirby_ribonucleic_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2077_citationRF_FLOATING))|11065213||ovftdb|SL0000100519576649511065213citation_FROM_JRF_ID_d3687e2077_citationRF_FLOATING[CrossRef]query.fcgi?db=PMC&cmd=Search&term=0264-6021[jour]+AND+66[volume]+AND+495[page]00019606-200609000-0001000001005_1957_66_495_kirby_ribonucleic_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2077_citationRF_FLOATING))|11065405||ovftdb|SL0000100519576649511065405citation_FROM_JRF_ID_d3687e2077_citationRF_FLOATING[Medline Link]1345988700019606-200609000-0001000004186_1989_83_364_houlston_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2099_citationRF_FLOATING))|11065213||ovftdb|SL0000418619898336411065213citation_FROM_JRF_ID_d3687e2099_citationRF_FLOATING[CrossRef]10.1007%2FBF0029138200019606-200609000-0001000004186_1989_83_364_houlston_oligonucleotide_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2099_citationRF_FLOATING))|11065405||ovftdb|SL0000418619898336411065405citation_FROM_JRF_ID_d3687e2099_citationRF_FLOATING[Medline Link]257253500019606-200609000-0001000004191_1988_3_373_emi_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2133_citationRF_FLOATING))|11065213||ovftdb|SL000041911988337311065213citation_FROM_JRF_ID_d3687e2133_citationRF_FLOATING[CrossRef]10.1016%2F0888-7543%2888%2990130-900019606-200609000-0001000004191_1988_3_373_emi_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2133_citationRF_FLOATING))|11065405||ovftdb|SL000041911988337311065405citation_FROM_JRF_ID_d3687e2133_citationRF_FLOATING[Medline Link]324355300019606-200609000-0001000006178_1988_16_1215_miller_extracting_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2167_citationRF_FLOATING))|11065213||ovftdb|SL00006178198816121511065213citation_FROM_JRF_ID_d3687e2167_citationRF_FLOATING[CrossRef]10.1093%2Fnar%2F16.3.121500019606-200609000-0001000006178_1988_16_1215_miller_extracting_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2167_citationRF_FLOATING))|11065405||ovftdb|SL00006178198816121511065405citation_FROM_JRF_ID_d3687e2167_citationRF_FLOATING[Medline Link]334421600019606-200609000-0001000003030_1979_25_279_warnick_hyperlipoproteinemia_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2200_citationRF_FLOATING))|11065213||ovftdb|SL0000303019792527911065213citation_FROM_JRF_ID_d3687e2200_citationRF_FLOATING[CrossRef]10.1093%2Fclinchem%2F25.2.27900019606-200609000-0001000003030_1979_25_279_warnick_hyperlipoproteinemia_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e2200_citationRF_FLOATING))|11065405||ovftdb|SL0000303019792527911065405citation_FROM_JRF_ID_d3687e2200_citationRF_FLOATING[Medline Link]21534800019606-200609000-0001000005407_1994_272_1666_wilson_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING))|11065404||ovftdb|SL000054071994272166611065404citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING[Full Text]00005407-199412070-0002600019606-200609000-0001000005407_1994_272_1666_wilson_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING))|11065213||ovftdb|SL000054071994272166611065213citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING[CrossRef]10.1001%2Fjama.1994.0352021005003100019606-200609000-0001000005407_1994_272_1666_wilson_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING))|11065405||ovftdb|SL000054071994272166611065405citation_FROM_JRF_ID_d3687e641_citationRF_FLOATING[Medline Link]796689400019606-200609000-0001000002372_1994_14_1617_anonymous_predisposition_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING))|11065404||ovftdb|SL00002372199414161711065404citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING[Full Text]01271213-199410000-0001400019606-200609000-0001000002372_1994_14_1617_anonymous_predisposition_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING))|11065213||ovftdb|SL00002372199414161711065213citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING[CrossRef]10.1161%2F01.ATV.14.10.161700019606-200609000-0001000002372_1994_14_1617_anonymous_predisposition_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING))|11065405||ovftdb|SL00002372199414161711065405citation_FROM_JRF_ID_d3687e710_citationRF_FLOATING[Medline Link]791831200019606-200609000-0001000013125_1996_7_59_knijff_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING))|11065404||ovftdb|SL00013125199675911065404citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING[Full Text]00041433-199604000-0000200019606-200609000-0001000013125_1996_7_59_knijff_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING))|11065213||ovftdb|SL00013125199675911065213citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING[CrossRef]10.1097%2F00041433-199604000-0000200019606-200609000-0001000013125_1996_7_59_knijff_apolipoprotein_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING))|11065405||ovftdb|SL00013125199675911065405citation_FROM_JRF_ID_d3687e744_citationRF_FLOATING[Medline Link]874389600019606-200609000-0001000019052_1995_8_24_graba_genetics_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING))|11065404||ovftdb|SL00019052199582411065404citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING[Full Text]00019052-199502000-0000500019606-200609000-0001000019052_1995_8_24_graba_genetics_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING))|11065213||ovftdb|SL00019052199582411065213citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING[CrossRef]10.1097%2F00019052-199502000-0000500019606-200609000-0001000019052_1995_8_24_graba_genetics_|00019606-200609000-00010#xpointer(id(citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING))|11065405||ovftdb|SL00019052199582411065405citation_FROM_JRF_ID_d3687e771_citationRF_FLOATING[Medline Link]7749512 Allele-specific Primers for the Identification of the 3 apoE Alleles Positive/negative PCR Pattern for the Identification of the 6 apoE Genotypes (see also Fig. 1)Simple and Effective Determination of Apolipoprotein E Genotypes by Positive/Negative Polymerase Chain Reaction ProductsSeripa Davide PhD; Signori, Emanuela; Gravina, Carolina; Matera, Maria Giovanna; Rinaldi, Monica PhD; Fazio, Vito M. MD, PhDOriginal ArticlesOriginal Articles315p 180-185