Share this article on:

Disaccharidase Activities in Children

Baker, Robert

Journal of Pediatric Gastroenterology and Nutrition: March 1999 - Volume 28 - Issue 3 - p 242-243

Division of Gastroenterology and Nutrition, Children's Hospital, Medical University of South Carolina, Charleston, South Carolina, U.S.A.

This editorial is accompanied by an article. Please see: Gupta SK et al. Disaccharidase activities in children: Normal values and comparison based on symptoms and histologic changes. J Pediatr Gastroenterol Nutr 1999;28:246-251 .

Received October 14, 1998; accepted October 16, 1998.

Address correspondence to Robert Baker, MD, PhD, Division of Gastroenterology and Nutrition, Children's Hospital, Medical University of South Carolina, 158 Rutledge Avenue, Charleston, SC 29403, U.S.A.

Initial recognition of the importance of disaccharide digestion in pediatrics is attributed to Howland (1), who in 1921 clearly described postinfectious carbohydrate intolerance and advocated the removal of carbohydrate from the diets of infants with prolonged diarrhea. Pediatricians followed his advice for many years with very little other than empiric evidence that it was correct. In 1959 Holzel et al. (2) reported siblings with severe congenital diarrhea and no elevation of blood glucose after lactose ingestion. The diarrhea resolved when the children were fed a lactose-free diet. This report of primary disaccharide intolerance led to the discovery of several types of familial carbohydrate-induced diarrhea. Two later reports established that intolerance to a specific disaccharide could cause postinfectious diarrhea. Haworth and Ford in 1960 (3) and van der Kamer and Weijer (4) in 1962 reported on patients with postinfectious diarrhea whose blood glucose failed to increase after disaccharide ingestion and who responded to removal of the disaccharide from the diet.

It was not until Dahlquist (5) published measurements of the disaccharidase activity in the mucosa of human small bowel in 1962 that studies of disaccharide intolerance focused on the sugar-splitting enzymes of the digestive tract. Miller and Crane (6) localized the activity to the brush border of the epithelial cell. Subsequently, individual disaccharidases were found in an array along the intestinal villus, with lactase being the most distal (7). Discovery of this ordered array led to the concept that lactase is the most vulnerable of the disaccharidases. It was hypothesized that if intestinal damage occurred, lactase would be most severely affected. The hypothesis was supported by several studies (8,9), but not by others (10,11).

Early attempts to define the normal disaccharide levels in humans of various ages were made by Townley et al. in 1965 (8), Welsh et al. in 1978 (12), and Lebenthal and Lee in 1980 (13). The most extensively used normal values are derived from Heitlinger et al. in 1991 (9). All these reports of normal values have been criticized because of small sample size, because of the inclusion of patients with diarrhea, or because a "normal" group of patients was not compared with an abnormal group.

The objective of the article appearing in this issue of the Journal of Pediatric Gastroenterology and Nutrition is to establish better normal values for small intestinal disaccharidase levels. Gupta et al. have identified a key problem with using presently accepted normals: what constitutes normal people? Heitlinger et al. (9) took the view that if the small bowel histology was normal, then the bowel has normal disaccharidase levels. This is clearly an oversimplification, in that, for instance, patients with sucrase-isomaltase deficiency can have normal histology. The authors of this article improve on this "normal" group by requiring that the biopsy specimen not only have normal histology, but also that the patient have no diarrhea. The study has attained a purer "normal" group, but it is still not a "true normal" group. The endoscopies and biopsies were performed for reasons that include conditions that could involve the small bowel, such as recurrent abdominal pain and failure to thrive. Characteristics of the normal group, not provided in this article, may influence the results, such as racial make-up. Additionally, the authors arbitrarily chose to divide their normal group by age into those less than 24 months and those greater than or equal to 24 months, They cite Heitlinger et al. (9) for justification. Indeed, Heitlinger et al. used 24 months as a cutoff age, not for physiologic reasons but rather because of the number of biopsy specimens available to analyze. In looking at the data of Heitlinger et al. it becomes clear that lactase activity begins decreasing in infants from 0 to 1 year of age and continues to decrease until they are 4 years of age. Therefore, although this article improves on defining what normal disaccharidase levels are, true normals are still elusive.

An interesting finding of this study is that lactase did not appear to be more vulnerable than other disaccharidases. A correlation between disaccharidase level and histologic damage occurred only when severe mucosal damage was present, but at that point all disaccharidase activity was decreased.

As clinicians ordering and interpreting tests daily, we are dependent on having normal values to make appropriate medical decisions. We are indebted to such investigators as Drs. Gupta, Chong, and Fitzgerald for questioning traditional normal values and providing us with better ones.

Back to Top | Article Outline


1. Howland J. Prolonged intolerance to carbohydrates. Arch Pediatr 1921;338:393-6.
2. Holzel A, Schwarz V, Sutcliffe KW. Defective lactose absorption causing malnutrition in infancy. Lancet 1959;1:1126-8.
3. Haworth JC, Ford JD. Blood sugar in infants after lactose feeds. Lancet 1960;ii:794-7.
4. Van der Kamer JH, Weijers HA, Dicke WK. Chronic diarrhea caused by a deficiency of sugar-splitting enzymes. Gastroenterologia (Basel) 1962;97:349-56.
5. Dahlquist A, The intestinal disaccharidases and disaccharide intolerance. Gastroenterology 1962;43:694-6.
6. Miller D, Crane RK. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochem Biophys Acta 1961;52:293-8.
7. Nordstroem C, Koldovsky O, Dahlquist A. Localization of β-galactosidases and acid phosphatase in the small intestinal wall: Comparison of adult and suckling rat. J Histochem Cytochem 1969;17:341-7.
8. Townley RRW, Khaw KT, Shwachman H. Quantitative assay of disaccharidase activities of small intestinal mucosal biopsy specimens in infancy and childhood. Pediatrics 1965;36:911-921.
9. Heitlinger LA, Rossi TM, Lee P-C, Lebenthal E. Human intestinal disaccharidase activities: Correlation with age, biopsy technique, and degree of villus atrophy. J Pediatr Gastroenterol Nutr 1991;12:204-8.
10. Calvin RT, Klish WJ, Nichols BL. Disaccharidase activities, jejunal morphology, and carbohydrate tolerance in children with chronic diarrhea. J Pediatr Gastroenterol Nutr 1985;4:949-53.
11. Harrison M, Walker-Smith JA. Reinvestigation of lactose intolerant children: Lack of correlation between continuing lactose intolerance and small intestinal morphology, disaccharidase activity and lactose tolerance test. Gut 1977;18:48-52.
12. Welsh JD, Poley JR, Bhatia M, Stevenson DE. Intestinal disaccharidase activities in relation to age, race, and mucosal damage. Gastroenterology 1978;75:847-55.
13. Lebenthal E, Lee P-C. Glucoamylase and disaccharidase activities in normal subjects and in patients with mucosal injury of the small intestine. J Pediatr 1980;97:389-93.
Back to Top | Article Outline

In the Next Issue

Original Articles

The Involvement of Gastrointestinal Tract in Post-Transplant Lymphoproliferative Disease in Pediatric Liver Transplantation

Bassam S. Younes, Marvin E. Ament, Sue V. McDiarmid, Martin G. Martin, and Jorge H. Vargas

Increased Expression of Transforming Growth Factor Beta-1 and Thrombospondin-1 in Congenital Hepatic Fibrosis: Possible Role of the Hepatic Stellate Cell

Mounif El-Youssef, Yan Mu, Lijun Huang, Veronica Stellmach, and Susan E. Crawford

Autoimmune Enteropathy with Distinct Mucosal Features in T Cell Activation Deficiency: The Contribution of T Cells to the Mucosal Lesion

Simon H. Murch, Caroline R. Fertleman, Carlos Rodrigues, Gareth Morgan, Nigel J. Klein, Nigel Meadows, Tor C. Savidge, Alan D. Phillips, and John A. Walker-Smith

Back to Top | Article Outline

Case Report

Congenital Hepatic Arterioportal Fistula in a 3-Year-Old with Weight Loss and Diarrhea: A Case Report and Review of the Literature

Valerie Marchand, Renan Uflacker, Susan S. Baker, and Robert D. Baker

Back to Top | Article Outline


Endoscopic Diagnosis of Lymphoproliferative Disease Following Solid Organ Transplantation Samuel A. Kocoshis

Autoimmunity with Immunodeficiency: A Logical Paradox Ernest G. Seidman and Georg A. Hollander

© 1999 Lippincott Williams & Wilkins, Inc.