The role of the gut microbiota on allergy development in early life

Nutricia presents the first in a three-part series of discussions around allergies in early life. These articles will focus on the important role of gut microbiota in early life and the role of pre- and probiotics in the prevention and dietary management of cow’s milk allergy (CMA).

In the grip of a pandemic
The prevalence of allergic diseases, such as food allergy, atopic eczema, allergic rhinitis and asthma, are rising dramatically worldwide in both developed and developing countries, affecting 30–40% of the population.1 The global rise of food allergy is particularly problematic in infants, who are bearing the greatest burden of this rising trend.2

Gut microbiota and the immune system
Microbial interactions are important drivers in the maturation of the immune system, with 70–80% of immune cells residing in the gut.3 The gut microbiota provides many useful functions including protection from harmful pathogens, strengthening the body’s immune defences and performing vital metabolic tasks.3 The immune system develops quickly during the first 1000 days of life; developing and maintaining a balance between the gut microbiota and the immune system is essential to maintain health, especially in infants and children.3 The development of allergic diseases is influenced by genetic, environmental factors and transmission from the mother to the fetus. These play a critical role in the development of the immune system and the gut microbiota.

The impact of gut microbiota dysbiosis on health and the development of allergy
The gut of a healthy breast-fed infant is typically dominated by bacteria of the Bifidobacteria species. These species are first transmitted from the mother during birth and via the breast milk.4,5 In addition to bacteria, breast milk also contains non-digestible oligosaccharides that are readily consumed by these specific species of Bifidobacteria. By contrast, C-section delivery, use of antibiotics and formula feeding can lead to a loss of these beneficial microbial organisms, and the expansion of pro-inflammatory pathobionts, many of which are species of Proteobacteria or Clostridium, e.g. C. perfringens and C. difficile.6 These changes result in a shift in metabolic capacity, and activity of the gut microbiota and can lead to health consequences in later life.7

Disruption of the gut microbiota in early life has been linked with numerous clinical disorders e.g. asthma, metabolic syndrome, cardiovascular disease and obesity.8 Many studies have shown that abnormal gut microbiota trajectories in infants may delay the development of oral tolerance and these play an important role in the development of food allergies, such as CMA.9 Infants with food allergies such as CMA have been shown to have low levels of bifidobacteria and lactobacilli in their gut microbiota compared with healthy, breast-fed infants.10

Nutritional support for infants with CMA
Nutritional support is an essential part of the clinical management of infants with CMA. CMA can present with a variety of symptoms, generally affecting the respiratory tract, the skin and the GI tract. It is classified according to the different immune responses, which include IgE-mediated (immediate) or cell mediated/non IgE-mediated (delayed) reactions and is associated with the development of other allergies.11

Recognising that breast feeding is not always possible, ways to support the development of the microbiota of formula-fed infants have been sought, resulting in the addition of prebiotic oligosaccharides and specific probiotic strains, alone or in combination, in several commercially available infant formulas.12,13 A growing amount of clinical evidence shows that pre- and probiotics can have beneficial effects in infants at risk of, or living with allergies. Pre- and probiotics aim to influence the status of the tissue directly, or indirectly, via the gut microbiota thereby aiming to prevent the onset of an allergic disease.14,15

The key for allergy management today is targeted exposure in a controlled microbial environment
Professor Nikos Papadopoulos, Paediatric Allergist

Factors which influence gut microbiota in early life8–10
- Gestational age
- The maternal environment
- Delivery mode (vaginal or caesarean)
- Nutrition (breast vs. formula feeding)
- Use of antibiotics
- Diet
- Air pollution

References: