Secondary Logo

Journal Logo

Review Article

Clinical practice recommendations for the detection and management of hyperglycemia in pregnancy from South Asia, Africa and Mexico during COVID-19 pandemic

Priya, Gagan1,; Bajaj, Sarita2; Kalra, Bharti3; Coetzee, Ankia4; Kalra, Sanjay5; Dutta, Deep6; Lim, Vivien7; Diwakar, Hema8; Deshmukh, Vaishali9; Mehta, Roopa10; Sahay, Rakesh11; Gupta, Yashdeep12; Sharma, J. B.13; Dasgupta, Arundhati14; Patnala, S.15; Afsana, Faria16; Giri, Mimi17; Sheikh, Aisha18; Baruah, Manash P.19; Asirvatham, A. R.20; Sheikh, Shehla21; Cooray, Samanthi22; Acharya, Kirtida23; Langi, Y. A.24; Jacob, Jubbin J.25; Malhotra, Jaideep26; George, Belinda27; Grewal, Emmy28; Chandrasekharan, Sruti29; Nadeem, Sarah30; Lamptey, Roberta31; Khandelwal, Deepak32

Author Information
Journal of Family Medicine and Primary Care: December 2021 - Volume 10 - Issue 12 - p 4350-4363
doi: 10.4103/jfmpc.jfmpc_653_21
  • Open

Abstract

Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had an immense impact on healthcare systems globally, including the continuum of care during the prenatal, antenatal and postnatal periods.[12] Hyperglycemia is reported to be the most frequent medical condition seen during pregnancy. According to 2019 estimates by the International Diabetes Federation (IDF), one in six live births (16.8%) occur in women with some form of hyperglycemia in pregnancy (HIP).[3] HIP could present as pre-existing or newly detected overt diabetes in pregnancy (DIP) or gestational diabetes mellitus (GDM) [Figure 1].[34] It is associated with adverse pregnancy outcomes and transgenerational impact on the offspring.[45] Prompt detection and appropriate management is, therefore, critical but frequent healthcare visits increase the risk of infection.[1] COVID-19 in pregnant women with hyperglycemia further increases the risk of complications.[67]

F1-4
Figure 1:
Classification of Hyperglycemia in Pregnancy (2; Adapted from WHO 2013)

Therefore, there is an urgent need to formulate strategies that balance continued delivery of optimal healthcare, most of which is provided by primary care physicians (PCPs), with the obligation to minimize the risk of infection in this vulnerable population.[8910] In a rapidly evolving pandemic situation, there is a dearth of published literature to guide PCPs, obstetricians, and diabetologists engaged in the detection and management of HIP.

The main objective of this review was to assess current guidelines and alternate strategies for the detection and management of HIP during the COVID-19 pandemic and suggest a pragmatic clinical approach PCPs, diabetes care providers and obstetricians.

Methods

The PubMed, Medline, Embase, and ScienceDirect databases were searched for articles published up to 15th June 2021, using the keywords ‘SARS-CoV-2,’ ‘coronavirus,’ ‘hyperglycemia in pregnancy (HIP),’ ‘antenatal care,’ ‘gestational diabetes mellitus (GDM),’ ‘gestational diabetes clinical practices, or recommendation.’ All guidelines and recommendations that have been issued as temporary alternative strategies for the detection and management of GDM and/or DIP were evaluated.[11121314151617181920] We also reviewed the global interim guidance on COVID-19 during pregnancy and puerperium from the International Federation of Gynecologists and Obstetricians (FIGO) and allied partners.[21] All searches were limited to publications and guidelines in the English language. Since this manuscript is based on a review of existing literature and no additional human studies were conducted, ethical or institutional permission was not required.

Screening for Hyperglycemia in Pregnancy during the Pandemic

Early detection of HIP is critical because it facilitates timely and appropriate management. Most guidelines recommend assessment of glycemic status at the first antenatal visit with fasting plasma glucose (FPG) or random plasma glucose (RPG) and/or glycosylated hemoglobin (HbA1c) to detect pre-existing diabetes or early GDM. In women with normal results at early screening, repeat testing during the second trimester is recommended. The 75-g 2-h oral glucose tolerance test (OGTT) is recommended as the gold standard for the detection of GDM between 24 and 28 weeks.[3411222324252627] However, there exists significant heterogeneity in the screening methods (universal versus risk-based screening, one-step versus two-step screening, use of 50-g versus 75-g glucose load and the cut-off values for plasma glucose) [Table 1]. Diabetes in Pregnancy Study Group India (DIPSI) recommends one-step universal screening test which is simple, feasible and cost-effective, especially in resource-limited settings.[12222829]

T1-4
Table 1:
Comparison of diagnostic criteria for GDM[3 4 11 12 22 23 25 26 27]

However, OGTT requires visiting and spending time at the sample collection center and multiple blood samples. This inadvertently increases the women’s risk of exposure to COVID-19 infection and places greater burden on PCPs dealing with a pandemic and calls for a need to find pragmatic alternatives.[810]

Various countries have suggested modifications to the algorithm for GDM screening during the pandemic, but these have not been sufficiently validated.[1314151617181920213031] Fasting or random plasma glucose and/or HbA1c have been suggested in place of the 2-hour OGTT. Table 2 provides a comparison between pre-existing guidelines and revised temporary guidance during the pandemic. Screening methods for GDM in women with risk factors during the evolving COVID-19 pandemic are depicted in Figure 2.[20]

T2-4
Table 2:
Revised Temporary Recommendations for Screening for GDM during COVID-19 pandemic
F2-4
Figure 2:
Screening for GDM in women with risk factors during the evolving COVID-19 pandemic. (Figure adapted from the Royal College of Obstetricians and Gynecologists’ Guidance for maternal medicine in the evolving coronavirus (COVID-19) pandemic, 20). FPG: Fasting plasma glucose; RPG: Random plasma glucose

All temporary guidelines support the use of an early pregnancy HbA1c ≥5.9% to identify GDM, although some offer other options (FPG, RPG and/or HbA1c). Due to safety concerns and burden on healthcare resources, guidelines propose alternate testing with FPG, RPG and/or HbA1c at 24-28 weeks instead of OGTT.[1019323334353637]

These temporary recommendations are patient-centered and at the same time safety-motivated in the light of the current unprecedented health crisis.[810323334] Table 3 compares different strategies for screening and diagnosis of GDM. While FPG and HbA1c have high specificity (low false positive rates), they may be associated with low sensitivity (high false negative rates). Therefore, the diagnosis of GDM may be missed in a substantial proportion of women.[10323334] On the contrary, if lower cut-offs are used, while this may increase the sensitivity, false positive rates are likely to be higher, leading to significant burden on PCPs engaged in dealing with the pandemic.

T3-4
Table 3:
Relative advantages and disadvantages of different screening methods for GDM

The role of HbA1c in GDM diagnosis remains highly debated. Rajput et al.[38] and Renz et al.[39] suggest that HbA1c may obviate the need for OGTT in one-third of women. However, others suggest that at any HbA1c cut-off with acceptable sensitivity, false-positive rates would be high.[40] The proposed cut-off for HbA1c of 5.7% in the UK and Canadian guidelines has high specificity (good rule-in test) but low sensitivity (not a good rule-out test).[40] It is also ideal to investigate the relevance and reliability of HbA1c estimates in resource-poor areas where National Glycohemoglobin Standardization Program (NGSP)-certified methods are not available.

Moreover, the association of HbA1c with adverse pregnancy outcomes has not been uniformly established. In the HAPO cohort, the association of HbA1c with birth weight, skin fold thickness plus percent body fat >90th percentile and cord blood C-peptide levels was weaker than glucose values.[41] Ho et al.[42] reported HbA1c levels were associated with the risk of gestational hypertension, preeclampsia, preterm delivery, low birth weight as well as macrosomia and the need for neonatal intensive care.

Using FPG alone is likely to miss one-third to one-half of GDM cases.[3743] Lamain-de Ruiter reported that a combined approach of HbA1c ≥5.7% and FPG ≥92 mg/dL (5.1 mmol/L) resulted in a detection rate of 51% with false-positive rate of 12% when compared to National Institute of Clinical Excellence (NICE) criteria. However, the rates of complications including large for gestational age (LGA), small for gestational age (SGA), stillbirth, preterm birth and Cesarean section were similar.[44]

McIntyre et al.[37] suggested that the approach recommended in Australian guidelines would miss 25% of GDM cases, but their outcome would be similar to women without GDM. However, a higher threshold of FPG and RPG in Canadian or UK guidelines would result in missing a substantially high number of women with GDM at increased risk of adverse outcomes.[3345] Meek et al.[33] evaluated the diagnostic and prognostic performance of such alternate strategies. The diagnosis of GDM according to IADPSG criteria correlated with FPG as well as HbA1c at 28 weeks.

Personalized risk calculators

The use of personalized risk calculators in first antenatal visit may help identify women at greater risk and increase the yield of testing.[4647] Many risk calculators have been validated to predict the risk of GDM, including the Monash risk calculator. Sensitivity is 61.3% with a specificity of 71.4%.[4448] The factors that have been found to be useful to predict the risk of GDM in several studies include maternal age and BMI, previous GDM or family history of diabetes and ethnicity.[49] The application of these risk calculators can be a pragmatic approach during the pandemic that allows for optimal resource utilization and minimizes risk of exposure.

Seshiah et al.[50] emphasized the importance of single-test, non-fasting procedure recommended by DIPSI as an evidence-based and viable option for screening during the pandemic. While this may be useful to minimize the need for frequent sampling, it still requires the administration of oral glucose load and sampling after 2 hours. While some studies[2251] have demonstrated the feasibility and cost-effectiveness of the DIPSI criteria in resource-limited settings, others suggest that DIPSI method has less sensitivity and may miss a substantial proportion of women with GDM.[5253]

Panel recommendations

  1. Universal screening for HIP is recommended for all pregnant women at the first antenatal visit and then at 24-28 weeks of gestation
  2. At the first antenatal visit, FPG or RPG and HbA1c should be measured along with other routine investigations. If FPG ≥126 mg/dL (7.0 mmol/L) or RPG ≥200 mg/dL (11.1 mmol/L) or HbA1c ≥6.5% (7.7 mmol/L), it confirms the diagnosis of overt diabetes. If FPG is 92-125 mg/dl (5.1-6.9 mmol/L) or HbA1c is ≥5.7-6.4%, it should be labeled as GDM
  3. If OGTT is not feasible, screening for GDM at 24-28 weeks can be done using FPG and HbA1c. Women with FPG ≥92 mg/dl (5.1 mmol/L) and/or HbA1c ≥5.7% should be considered as having GDM. Regular screening protocols with 2-hour OGTT should be resumed once the pandemic is over.

Pre-Pregnancy Planning in Women with Pre-Existing Diabetes during COVID-19

Women with pre-existing diabetes are at a greater risk of preterm birth, perinatal mortality, congenital malformations and neonatal hypoglycemia and need pre-pregnancy optimization.[5455] Pregnant women with diabetes are at a greater risk of severe COVID-19 infection with greater morbidity, need for hospitalization, intensive care unit (ICU) admission and mechanical ventilation as well as mortality.[5657] Therefore, they should strictly adhere to social distancing, hand hygiene and use of face masks.[11420]

Optimal glycemic and metabolic control at this time is not only important to reduce the risk of severe COVID-19 infection, it also ensures optimal metabolic control.[58] This can be planned through scheduled telemedicine or physical visits, as necessary.[414] Additionally, periodic screening to assess any complications or comorbidities is strongly recommended.[58] Folic acid supplementation should also be started.[34]

Panel recommendations

  1. We recommend that all women with pre-existing diabetes should discuss pregnancy planning with their diabetes care team, keeping in mind the risk of inadvertent infection from frequent healthcare visits
  2. Glycemic control, blood pressure and weight should be optimized prior to pregnancy. It is advisable to switch previous antidiabetic therapy to insulin along with self-monitoring of blood glucose (SMBG) and discontinue medications that are contraindicated in pregnancy
  3. Telemedicine services for pre-pregnancy counseling and management can reduce the risk of exposure in women planning pregnancy

Management of Hyperglycemia in Pregnancy during COVID-19

Management of women with HIP should follow existing standards of care.[25] An ideal approach to the management of HIP includes dietary and lifestyle advice, frequent blood glucose self-monitoring, weight and blood pressure (BP) monitoring, and pharmacological therapy.[142050] Minimizing hospital visits for diabetes care to align them with visits to the obstetrician or for ultrasonography (USG) can increase positive outcomes during COVID-19.[159] Women should be instructed on appropriate safe distancing precautions, hand hygiene and the use of face masks. Strict social distancing measures should be implemented and visits scheduled in a manner to avoid overcrowding.[60] The healthcare staff should also use adequate personal protective equipment (PPE) that includes triple-layered surgical or N95 facemask and gloves.

Women with pre-existing diabetes

As soon as pregnancy is confirmed, women with pre-existing diabetes should undergo detailed evaluation with HbA1c, renal and thyroid function tests, urinary albumin creatinine ratio and fundus evaluation.[20] The women should be counseled about medical nutrition therapy, physical activity, home monitoring, medications and insulin, recognition and management of hypoglycemia management as well as sick day guidelines in the first visit.[8] Continuous glucose monitoring (CGM) may be used for glycemic monitoring and allows for the detection of glycemic variability and remote transmission of data.[61] A telephonic or electronic mode of follow-up should be established.

Continued fetal monitoring should follow established standards of care, including nuchal translucency (NT) scan, fetal movement count and fetal ultrasound for monitoring of fetal growth and amniotic fluid. Royal College of Obstetricians and Gynecologists (RCOG) recommends that for women with DIP, face-to-face obstetric visits can coincide with planned ultrasound at 28 and 32 weeks. A comprehensive review is recommended at 34-36 weeks to plan for time and mode of delivery. This can be done remotely if feasible.[20] Close communication between obstetrician and diabetes care team is recommended throughout pregnancy. COVID-19 testing is advised in all pregnant women within a week prior to planned delivery.

Table 4 provides a checklist for the first antenatal visit[1420] and Figure 3 provides an algorithm for the management of diabetes in women with pre-gestational diabetes.[1420]

T4-4
Table 4:
Checklist for the first antenatal visit in women with pre-existing diabetes during the COVID-19 pandemic
F3-4
Figure 3:
Algorithm for the management of diabetes in pregnant women with pre-existing diabetes during the COVID-19 pandemic

Women with gestational diabetes mellitus

Following a diagnosis of GDM, the first consultation should include advice on medical nutrition therapy, SMBG and glycemic targets. The usual protocols for dietary advice, physical activity, blood glucose monitoring and insulin initiation should be followed.[16] Regular follow-up of these women every 2 weeks can be done via telemedicine to review SMBG records. For women who need pharmacological treatment, diabetes care can be followed up remotely. Obstetric visits are needed at 28 and at 32 weeks concomitant with ultrasound. Obstetric review at 36 weeks is recommended to plan time and mode of delivery. Timing of delivery should be planned in accordance with maternal risk factors for perinatal morbidity.[16]

Table 5 provides a checklist for the first consultation and Figure 4 provides an algorithm for the management of GDM during the COVID-19 pandemic.[1420]

T5-4
Table 5:
Checklist for the first consultation for gestational diabetes mellitus during the COVID-19 pandemic
F4-4
Figure 4:
Algorithm for the management of gestational diabetes mellitus during the COVID-19 pandemic

Role of telemedicine in care delivery during the pandemic

Currently, majority of antenatal diabetes and obstetric visits are being provided remotely.[62] Owing to the pandemic, maternity support has transitioned from in-person hospital visits to virtual home-based training for self-assessment and management/monitoring of blood glucose and blood pressure.[6364] Remote monitoring of glucose and other records through phone or other online platforms can be used for follow-up.[110146566] Video conference platforms, smart phones and internet apps can be used to host virtual GDM classes and teach insulin technique.[91566]

The use of telemedicine to evaluate the effect of mobile health (mHealth) interventions on pregnancy weight management, blood glucose control, and pregnancy outcomes has been evaluated in numerous studies, suggesting a reduced incidence of adverse pregnancy outcomes.[6365] Dodesini et al.[67] reported that a combination of telemedicine and lockdown measures was associated with very few women with pregestational diabetes testing positive for COVID-19, highlighting the importance of these measures.

Antenatal corticosteroids

For women who are at risk of imminent preterm birth, antenatal corticosteroid treatment is prescribed to promote fetal lung maturity.[34] However, even a short course of antenatal corticosteroids can have a deleterious impact on glycemic control. In women already on insulin, this requires an appropriate increment in insulin doses, in accordance with blood glucose monitoring while in women on lifestyle modification alone, short-term use of insulin may be required.[6869]

Postpartum Care and Screening for Diabetes in Women with GDM

Women with GDM are at increased risk of overt diabetes; therefore, guidelines recommend OGTT to assess glycemic status at 4-12 weeks postpartum.[14] However, temporary guidelines issued during the pandemic agree that postpartum screening with a formal OGTT at 4-12 weeks should be deferred to prevent undue exposure to the mother and her child.[15]

Women may be advised to monitor capillary blood glucose at home if they have persistent hyperglycemia after delivery in the immediate postpartum period or had high insulin requirements during pregnancy.[1370] These women can be monitored via telemedicine services for continued care. RCOG and Australian guidelines recommend HbA1c for screening instead of OGTT at 3-6 months.[171820]

Panel recommendations

  1. Women with GDM should be advised to continue adherence to lifestyle modification, optimization of body weight, blood glucose and blood pressure and contraception after delivery. It is also advisable to discuss future pregnancy planning with the diabetes care team
  2. We recommend that glycemic status should be determined in the immediate postpartum period in women with GDM by frequent capillary glucose monitoring
  3. Women with persistent hyperglycemia or those with high insulin dose requirements during pregnancy should be advised to continue SMBG at home and contact diabetes care team via telemedicine services
  4. For women who become normoglycemic after delivery, HbA1c and FPG or RPG can be measured at 3-6 months. Routine OGTT should be deferred till after the pandemic.

Management of Hyperglycemia in Pregnant Women Infected with COVID-19

Immunological changes in pregnancy make women more susceptible to severe respiratory infections.[21] However, the effect of COVID-19 infection on the outcomes of pregnancy is not well-documented. Studies have reported that the rates of preterm birth, pre-eclampsia and stillbirth are increased in pregnant women infected with COVID-19 infection.[717273] They were more likely to be hospitalized, need ICU admission or mechanical ventilation, but mortality was not higher.[5774] Women who had pre-existing diabetes, gestational hypertension, pre-eclampsia and obesity were more likely to have severe COVID-19 infection.[75]

Hyperglycemia can lead to impaired immune response to infections and increased inflammation, both of which have been linked to worse outcomes of COVID-19 infection.[58] This not only increases the susceptibility of pregnant women with diabetes to severe infection, but also can lead to worsening of glycemic control and diabetic ketoacidosis (DKA). In addition, medications such as glucocorticoids that are used in the management of severe disease may also cause/worsen hyperglycemia.[58] Several cases of new onset hyperglycemia due to COVID-19 infection have been reported.[767778] DKA has been reported during pregnancy with COVID-19 infection and this may occur at relatively lower blood glucose concentrations.[7778] DKA can be associated with risk of fetal mortality.[79] Therefore, close gluco-vigilance is imperative in COVID-19 infected pregnant women with HIP. In addition, evaluation for ketonuria and ketonemia is needed even if the blood glucose levels are not significantly elevated.

Since COVID-19 infection may lead to stress hyperglycemia even in individuals without prior history of diabetes mellitus, it would be prudent to monitor blood glucose for 2-3 days in all COVID-19 infected pregnant women even if they do not have previously diagnosed HIP, especially if there are receiving glucocorticoids.

Suspected, probable or confirmed cases of COVID-19 infection should be advised home or institute quarantine, based on the severity of infection.[21] Table 6 summarizes the management of pregnant women with HIP who are suspected or have COVID-19 infection. Pregnant women with HIP who are asymptomatic or have mild infection can be managed via regular teleconsultation at home. They should be advised on nutrition, adequate hydration, increased capillary glucose monitoring (6-7 times per day), self-titration of insulin doses, hypoglycemia care and sick-day guidelines.[142076] Proper fluid and caloric intake must be ensured to prevent dehydration. In case of any deterioration in clinical state, occurrence of significant hyperglycemia or ketosis or in moderate to severe infection, they should be managed as in-patients.

T6-4
Table 6:
Management of pregnant women with hyperglycemia in pregnancy infected with COVID-19[21 89]

The management of in-patient hyperglycemia in pregnancy should be with insulin therapy.[80] If the woman is taking metformin or glyburide, these should be discontinued, and patient started on insulin.[76] Critically ill women will require continuous intravenous insulin infusion with hourly blood glucose monitoring. In non-critically ill women, use of basal-bolus approach with 6- 7-point blood glucose profile is advisable.[80] In women on continuous subcutaneous insulin pump, it can be continued with frequent monitoring and administration of correction boluses. CGM may help facilitate glycemic control, can minimize the burden on nursing staff and allow for remote in-patient monitoring of glucose levels.[81] In women who receive glucocorticoids, insulin dose needs to be appropriately titrated to ensure glycemic control.

Antenatal evaluation for GDM or DIP should follow standard protocols in pregnancies affected by COVID-19 and at present, there is no evidence to suggest more frequent antenatal testing.[7682838485868788] In-person antenatal follow-up visit can be postponed by 14 days to minimize exposure to other antenatal women clinic staff.[21] In the meantime, telemedicine services should continue to be utilized for delivery of diabetes care.

Though no reports of fetal malformations following SARS-CoV-2 infection have been reported, FIGO recommends a fetal morphology scan at 18-23 weeks of gestation if the woman was infected with COVID-19 in early pregnancy.[21] The Federation of Obstetric and Gynecological Societies of India (FOGSI) recommends fetal ultrasound 2 weeks after the infection for fetal well-being and amniotic fluid.[89] Timing and the mode of delivery are individualized, depending on maternal and fetal status and gestational age.[89] COVID-19 infected pregnant women may develop significant anxiety and require continued psychological support.

If the mother has been infected within 14 days prior to delivery, COVID-19 testing of the newborn should be considered. It is not known if SARS-CoV-2 can be transmitted via breastmilk, but there is a risk of contact transmission from mother to the child. Guidelines recommend that the benefits of breastfeeding outweigh the risk of infection to the neonate.[2189] The mother should be advised to wash her hands and breast and wear a facemask when lactating. Alternatively, breastmilk may be expressed with a breast pump for feeding.

Panel recommendations

  1. We recommend that blood glucose monitoring should be intensified in pregnant women with hyperglycemia who are infected with COVID-19
  2. Asymptomatic women or those with mild infection can be managed at home with advice on maintaining hydration, nutrition, frequent SMBG and urinary ketone testing, insulin dose self-titration, hypoglycemia care and sick day guidelines. Insulin remains the mainstay of treatment for glycemic control and insulin doses can be adjusted via telemedicine or remote services. They should promptly contact the diabetes care team in case of any worsening of symptoms or glycemic control or appearance of ketonuria. A low index of suspicion for hospitalization should be maintained.
  3. Pregnant women with pre-existing of gestational diabetes who develop moderate to severe COVID-19 infection need hospitalization. Insulin administered as a basal bolus approach should be titrated as per severity of infection, nutritional status and glycemic control. Insulin dose may be significantly higher in women requiring glucocorticoids for the management of COVID-19.

Conclusion

Primary care physicians are often engaged in the care of pregnant women with HIP. The pandemic has compromised routine care and there is lack of guidance for a pragmatic approach to the detection and management of HIP during the pandemic. Reducing the number of clinic visits in pregnant women is important to reduce the risk of COVID-19. Use of alternate strategies using FPG and HbA1c instead of the 2-hour OGTT has been suggested for the screening of HIP. Virtual healthcare services with remote monitoring and delivery of care in women with GDM or DIP via the use of telemedicine platforms can improve outcomes while minimizing the risk of infection. Pregnant women with diabetes who develop COVID-19 infection should be closely monitored and hospitalized if there is any deterioration in clinical condition.

Most of the recommendations for the management of HIP during the pandemic need to be assessed further in terms of diagnostic and therapeutic efficacy along with the long-term implications of these decisions.

Disclosures

All authors had full access to the articles reviewed in this manuscript, have read and reviewed the final draft of this manuscript and take complete responsibility for the integrity and accuracy of this manuscript. The details published herein are intended for informational, educational, academic and/or research purposes and are not intended to substitute for professional medical advice, diagnosis or treatment.

Compliance with ethical guidance

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Acknowledgements

We would like to thank Dr Rajshri Mallabadi and Dr Chinappa A B from BioQuest Solutions Pvt. Ltd, Bangalore, for providing medical writing assistance and editorial support in the preparation of this manuscript. We also thank Dr S Amarnath for editorial and scientific support.

References

1. Murphy HR. Managing diabetes in pregnancy before, during, and after COVID-19 Diabetes Technol Ther. 2020;22:454–61
2. Ghesquière L, Garabedian C, Drumez E, Lemaître M, Cazaubiel M, Bengler C, et al Effects of COVID-19 pandemic lockdown on gestational diabetes mellitus:A retrospective study Diabetes Metab. 2021;47:101201 doi:10.1016/j.diabet. 2020.09.008
3. International Federation of Gynecology and Obstetrics. Global Declaration on Hyperglycemia in Pregnancy. Available from: https://www.figo.org/FIGO-globaldeclaration-hip[Last accessed on 2020 Aug 12]
4. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy:A World Health Organization guideline. Diabetes Res Clin Pract. 2014;103:341–63
5. HAPO Study Cooperative Research Group. Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al Hyperglycemia and adverse pregnancy outcomes N Engl J Med. 2008;358:1991–2002
6. Breslin N, Baptiste C, Gyamfi-Bannerman C, Miller R, Martinez R, Bernstein K, et al Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women:Two weeks of confirmed presentations to an affiliated pair of New York City hospitals Am J Obstet Gynecol MFM. 2020;2:100118 doi:10.1016/j.ajogmf. 2020.100118
7. Martínez-Perez O, Vouga M, Cruz Melguizo S, Forcen Acebal L, Panchaud A, Muñoz-Chápuli M, et al Association between mode of delivery among pregnant women with COVID-19 and maternal and neonatal outcomes in Spain JAMA. 2020;324:296–9
8. Nouhjah S, Jahanfar S, Shahbazian H. Temporary changes in clinical guidelines of gestational diabetes screening and management during COVID-19 outbreak:A narrative review Diabetes Metab Syndr. 2020;14:939–42
9. Aziz A, Zork N, Aubey JJ, Baptiste CD, D'Alton ME, Emeruwa UN, et al Telehealth for high-risk pregnancies in the setting of the COVID-19 pandemic Am J Perinatol. 2020;37:800–8
10. McIntyre HD, Moses RG. The diagnosis and management of gestational diabetes mellitus in the context of the COVID-19 pandemic Diabetes Care. 2020;43:1433–4
11. Rani PR, Begum J. Screening and diagnosis of gestational diabetes mellitus, where do we stand J Clin Diagn Res. 2016;10:QE01–4
12. Junnnare KK, Adhau SR, Hegde MV, Naphade PR. Screening of gestational diabetes mellitus in antenatal women using DIPSI guidelines Int J Res Med Sci. 2016;4:446–9
13. Torlone E, Festa C, Formoso G, Scavini M, Sculli MA, Succurro E, et al Italian recommendations for the diagnosis of gestational diabetes during COVID-19 pandemic:Position statement AMD-SID, Diabetes and Pregnancy Study Group Nutr Metab Cardiovasc Dis. 2020;30:1418–22
14. Torlone E, Sculli MA, Bonomo M, Di Benedetto A, Di Cianni G, Festa C, et al Recommendations and management of hyperglycaemia in pregnancy during COVID-19 pandemic in Italy Diabetes Res Clin Pract. 2020;166:108345 doi:10.1016/j.diabres. 2020.108345
15. Yamamoto JM, Donovan LE, Feig DS, Berger H. Urgent Update –Temporary Alternative Screening Strategy for Gestational Diabetes Screening during the COVID-19 Pandemic A Joint Consensus Statement from the Diabetes Canada Clinical Practice Guidelines Steering Committee and the Society of Obstetricians and Gynecologists of Canada. Available from: https://sogc.org/common/Uploaded%20files/GDM-COVID-19%20temporary%20screening%20guidelines%20-%2020200402%20Agreed%20Final.pdf[Last accessed on 2020 Sep 15]
16. The Royal Australian and New Zealand College of Obstetricians and Gynaecologists. COVID-19 and gestational diabetes screening, diagnosis and management. 6 April 2020, Updated on 20 Aug 2020 Available from: https://ranzcog.edu.au/news/covid-19-and-gestational-diabetes-screening,-diagn[Last accessed 2020 Sep 15]
17. The Australasian Diabetes in Pregnancy Society (ADIPS), the Australian Diabetes Society (ADS), the Australian Diabetes Educators Association (ADEA), and Diabetes Australia (DA). Diagnostic testing for gestational diabetes mellitus (GDM) during the COVID 19 pandemic:Antenatal and postnatal testing advice. Available from: https://static.diabetesaustralia.com.au/s/fileassets/diabetes-australia/e4f409b9-b9bf-4c74-96df-8a3cc424367b.pdf[Last accessed on 2020 Sep 15]
18. Queensland Clinical Guidelines. Notice of update during COVID-19 pandemic. Recommendations for GDM screening and oral glucose tolerance test (OGTT) during pregnancy and postpartum. 29 Jun, 2020. Available from: https://www.health.qld.gov.au/__data/assets/pdf_file/0022/950503/g-gdm.pdf[Last accessed on 2020 Sep 15]
19. Kasuga Y, Saisho Y, Ikenoue S, Ochiai D, Tanaka M. A new diagnostic strategy for gestational diabetes during the COVID-19 pandemic for the Japanese population Diabetes Metab Res Rev. 2020;36:e3351
20. Royal College of Obstetricians and Gynaecologists. . Guidance for maternal medicine services in the evolving coronavirus (COVID-19) pandemic Information for healthcare professionals. Version 2.4:Published Friday 10 July 2020. Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/2020-07-10-guidance-for-maternal-medicine.pdf[Last accessed on 2020 Sep 14]
21. Poon LC, Yang H, Kapur A, Melamed N, Dao B, Divakar H, et al Global interim guidance on coronavirus disease 2019 (COVID-19) during pregnancy and puerperium from FIGO and allied partners:Information for healthcare professionals Int J Gynaecol Obstet. 2020;149:273–86
22. Balaji V, Balaji M, Anjalakshi C, Cynthia A, Arthi T, Seshiah V. Diagnosis of gestational diabetes mellitus in Asian-Indian women Indian J Endocrinol Metab. 2011;15:187–90
23. International Association of Diabetes and Pregnancy Study Groups consensus panel (IADPSG). . International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycaemia in pregnancy Diabetes Care. 2010;33:676–82
24. HAPO Study Cooperative Research Group. . Hyperglycaemia and adverse pregnancy outcomes N Engl J Med. 2008;358:1991–2002
25. American Diabetes Association. . Management of diabetes in pregnancy:Standards of medical care in diabetes Diabetes Care. 2020;43:S183–92
26. Diabetes in pregnancy:Management from preconception to the postnatal period 2015. Available from: www.nice.org.uk/guidance/ng3[Last accessed on 2020 Sep 14]
27. Diabetes Canada Clinical Practice Guidelines Expert Committee. Feig DS, Berger H, Donovan L, Godbout A, Kader T, et al Diabetes and pregnancy Can J Diabetes. 2018;42(Suppl 1):S255–82
28. Saxena P, Verma P, Goswami B. Comparison of diagnostic accuracy of non-fasting DIPSI and HbA1c with fasting WHO criteria for diagnosis of gestational diabetes mellitus J Obstet Gynaecol India. 2017;67:337–42
29. Vij P, Jha S, Gupta SK, Aneja A, Mathur R, Waghare S, et al Comparison of DIPSI and IADPSG criteria for diagnosis of GDM:A study in a north Indian tertiary care center Int J Diabetes Dev Ctries. 2015;35:285–8
30. Bangladesh Endocrine Society (BES) Practical Recommendations for Management of Diabetes and Other Endocrine Diseases in Patients with COVID-19.. Available from:http://bes-org.net/wp-content/uploads/2020/06/BES-COVID-Pract-Recomnd-06-June-Final-Copy.pdf[Last accessed on 2020 Sep 15]
31. Takkar S, Jyotsna M, Goyal P, Chaudhary A, Vipperla S, Hemalatha Y, et al Consensus scientific statement on advisory working guidelines and recommendations for female population in COVID era by WINCARS Ind J CVD in Women - WINCARS. 2020;5:175–94
32. Vambergue A, Jacqueminet S, Lamotte MF, Lamiche-Lorenzini F, Brunet C, Deruelle P, et al Three alternative ways to screen for hyperglycemia in pregnancy during the COVID-19 pandemic Diabetes Metab. 2020 doi:10.1016/j.diabet. 2020.04.003
33. Meek CL, Lindsay RS, Scott EM, Aiken CE, Myers J, Reynolds RM, et al Approaches to screening for hyperglycaemia in pregnant women during and after the COVID-19 pandemic Diabet Med. 2021;38:e14380 doi:10.1111/dme. 14380
34. d'Emden M, McLeod D, Ungerer J, Appleton C, Kanowski D. Development of a fasting blood glucose-based strategy to diagnose women with gestational diabetes mellitus at increased risk of adverse outcomes in a COVID-19 environment PLoS One. 2020;15:e0243192
35. Panaitescu AM, Ciobanu AM, Popa M, Duta I, Gica N, Peltecu G, et al Screening for gestational diabetes during the COVID-19 pandemic-current recommendations and their consequences Medicina (Kaunas). 2021;57:381
36. Nachtergaele C, Vicaut E, Tatulashvili S, Pinto S, Bihan H, Sal M, et al Limiting the use of oral glucose tolerance tests to screen for hyperglycemia in pregnancy during pandemics J Clin Med. 2021;10:397
37. McIntyre HD, Gibbons KS, Ma RCW, Tam WH, Sacks DA, Lowe J, et al Testing for gestational diabetes during the COVID-19 pandemic. An evaluation of proposed protocols for the United Kingdom, Canada and Australia. Diabetes Res Clin Pract 2020;167:108353 doi:10.1016/j.diabres. 2020.108353
38. Rajput R, Yogesh Yadav, Rajput M, Nanda Sl. Utility of HbA1c for diagnosis of gestational diabetes mellitus Diabetes Res Clin Pract. 2012;98:104–7
39. Renz PB, Cavagnolli G, Weinert LS, Silveiro SP, Camargo JL. HbA1c test as a tool in the diagnosis of gestational diabetes mellitus PLoS One. 2015;10:e0135989
40. Ye M, Liu Y, Cao X, Yao F, Liu B, Li Y, et al The utility of HbA1c for screening gestational diabetes mellitus and its relationship with adverse pregnancy outcomes Diabetes Res Clin Pract. 2016;114:43–9
41. Lowe LP, Metzger BE, Dyer AR, Lowe J, McCance DR, Lappin TR, et al Hyperglycemia and adverse pregnancy outcome (HAPO) study:Associations of maternal A1C and glucose with pregnancy outcomes Diabetes Care. 2012;35:574–80
42. Ho YR, Wang P, Lu MC, Tseng ST, Yang CP, Yan YH. Associations of mid-pregnancy HbA1c with gestational diabetes and risk of adverse pregnancy outcomes in high-risk Taiwanese women PLoS One. 2017;12:e0177563
43. van Gemert TE, Moses RG, Pape AV, Morris GJ. Gestational diabetes mellitus testing in the COVID-19 pandemic:The problems with simplifying the diagnostic process Aust N Z J Obstet Gynaecol. 2020;60:671–4
44. Lamain-de Ruiter M, Kwee A, Naaktgeboren CA, de Groot I, Evers IM, Groenendaal F, et al External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort:Prospective multicentre cohort study BMJ. 2016;354:i4338 doi:10.1136/bmj.i4338
45. van-de-l'Isle Y, Steer PJ, Watt Coote I, Cauldwell M. Impact of changes to national UK Guidance on testing for gestational diabetes screening during a pandemic:A single-centre observational study BJOG. 2021;128:917–20
46. Nombo AP, Mwanri AW, Brouwer-Brolsma EM, Ramaiya KL, Feskens EJM. Gestational diabetes mellitus risk score:A practical tool to predict gestational diabetes mellitus risk in Tanzania Diabetes Res Clin Pract. 2018;145:130–7
47. Artzi NS, Shilo S, Hadar E, Rossman H, Barbash-Hazan S, Ben-Haroush A, et al Prediction of gestational diabetes based on nationwide electronic health records Nat Med. 2020;26:71–6
48. Teede HJ, Harrison CL, Teh WT, Paul E, Allan CA. Gestational diabetes:Development of an early risk prediction tool to facilitate opportunities for prevention Aust N Z J Obstet Gynaecol. 2011;51:499–504
49. Cosson E, Vicaut E, Sandre-Banon D, Gary F, Pharisien I, Portal JJ, et al Performance of a selective screening strategy for diagnosis of hyperglycaemia in pregnancy as defined by IADPSG/WHO criteria Diabetes Metab. 2020;46:311–8
50. Seshiah V, Balaji V, Banerjee S, Sahay R, Divakar H, Jain R, et al Diagnosis and principles of management of gestational diabetes mellitus in the prevailing COVID-19 pandemic Int J Diabetes Dev Ctries. 2020:1–6 doi:10.1007/s13410-020-00860-1
51. Khan S, Bal H, Khan ID, Paul D. Evaluation of diabetes in pregnancy study group of India criteria and Carpenter-Coustan criteria in the diagnosis of gestational diabetes mellitus Turk J Obstet Gynecol. 2018;15:75–9
52. Mohan V, Mahalakshmi MM, Bhavadharini B, Maheswari K, Kalaiyarasi G, Anjana RM, et al Comparison of screening for gestational diabetes mellitus by oral glucose tolerance tests done in the non-fasting (random) and fasting states Acta Diabetol. 2014;51:1007–13
53. Tripathi R, Verma D, Gupta VK, Tyagi S, Kalaivani M, Ramji S, et al Evaluation of 75g glucose load in non-fasting state (Diabetes in Pregnancy Study group of India (DIPSI) criteria) as a diagnostic test for gestational diabetes mellitus Indian J Med Res. 2017;145:209–14
54. Lee D, Booth GL, Ray JG, Ling V, Feig DS. Undiagnosed type 2 diabetes during pregnancy is associated with increased perinatal mortality:A large population-based cohort study in Ontario, Canada Diabet Med. 2020 doi:10.1111/dme. 14250
55. FSRH CEU:Information to support management of individuals requesting to discontinue contraception to plan a pregnancy during the Covid-19 outbreak. 2020 Available from: https://www.fsrh.org/documents/fsrh-ceu-information-to-support-management-of-individuals/[Last Accessed on 2020 Sep 15]
56. Priya G, Bajaj S, Grewal E, Maisnam I, Chandrasekharan S, Selvan C. Challenges in women with diabetes during the COVID-19 pandemic Eur Endocrinol. 2020;16:100–8
57. Knight M, Bunch K, Vousden N, Morris E, Simpson N, Gale C, et al Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK:National population based cohort study BMJ. 2020;369:m2107 doi:10.1136/bmj.m2107
58. Priya G, Kalra B, Grewal E, Dardi IK. Premarriage counseling in type 1 diabetes Indian J Endocrinol Metab. 2018;22:126–31
59. Yang H, Wang C, Poon LC. Novel coronavirus infection and pregnancy Ultrasound Obstet Gynecol. 2020;55:435–7
60. Royal College of Obstetricians and Gynaecologists. . Coronavirus (COVID-19) Infection in Pregnancy Information for healthcare professionals Version 12:Published Wednesday 14 October 2020. Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/2020-10-14-coronavirus-covid-19-infection-in-pregnancy-v12.pdf[Last accessed on Oct 15]
61. Yu Q, Aris IM, Tan KH, Li LJ. Application and utility of continuous glucose monitoring in pregnancy:A systematic review Front Endocrinol (Lausanne). 2019;10:697 doi:10.3389/fendo. 2019.00697
62. Moradi F, Ghadiri-Anari A, Enjezab B. COVID-19 and self-care strategies for women with gestational diabetes mellitus Diabetes Metab Syndr. 2020;14:1535–9 doi:10.1016/j.dsx. 2020.08.004
63. Guo H, Zhang Y, Li P, Zhou P, Chen LM, Li SY. Evaluating the effects of mobile health intervention on weight management, glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus J Endocrinol Invest. 2019;42:709–14
64. Chilelli NC, Dalfrà MG, Lapolla A. The emerging role of telemedicine in managing glycemic control and psychobehavioral aspects of pregnancy complicated by diabetes Int J Telemed Appl. 2014;2014:621384 doi:10.1155/2014/621384
65. Xie W, Dai P, Qin Y, Wu M, Yang B, Yu X. Effectiveness of telemedicine for pregnant women with gestational diabetes mellitus:An updated meta-analysis of 32 randomized controlled trials with trial sequential analysis BMC Pregnancy Childbirth. 2020;20:198
66. Albert L, Capel I, García-Sáez G, Martín-Redondo P, Hernando ME, et al Managing gestational diabetes mellitus using a smartphone application with artificial intelligence (SineDie) during the COVID-19 pandemic:Much more than just telemedicine Diabetes Res Clin Pract. 2020;169:108396
67. Dodesini AR, Galliani S, Ciriello E, Bellante R, Trevisan R. Pre-gestational diabetes during the COVID-19 pandemic in Bergamo, Italy Int J Gynaecol Obstet. 2020 doi:10.1002/ijgo. 13306
68. Kalra S, Kalra B, Gupta Y. Glycemic management after antenatal corticosteroid therapy N Am J Med Sci. 2014;6:71–6 doi:10.4103/1947-2714.127744
69. Jewel R, Jacob JJ. Intra-partum management of women with diabetes J Pak Med Assoc. 2018;68:490–3
70. Coetzee A, Mason D, Hall DR, Hoffmann M, Conradie M. Evidence for the utility of antenatal HbA1c to predict early postpartum diabetes after gestational diabetes in South Africa Diabetes Res Clin Pract. 2018;143:50–5
71. Di Mascio D, Khalil A, Saccone G, Rizzo G, Buca D, Liberati M, et al Outcome of coronavirus spectrum infections (SARS, MERS, COVID 1–19) during pregnancy:A systematic review and meta-analysis Am J Obstet Gynecol MFM. 2020;2:100107 https://doi.org/10.1016/j.ajogmf. 20200.100107
72. Della Gatta AN, Rizzo R, Pilu G, Simonazzi G. Coronavirus disease 2019 during pregnancy:A systematic review of reported cases Am J Obstet Gynecol. 2020;223:36–41
73. Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy outcomes:A systematic review and meta-analysis CMAJ. 2021;193:E540–8
74. Ellington S, Strid P, Tong VT, Woodworth K, Galang RR, Zambrano LD, et al Characteristics of women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status - United States, January 22-June 7, 2020 MMWR Morb Mortal Wkly Rep. 2020;69:769–75 doi:10.15585/mmwr.mm6925a1
75. Kayem G, Lecarpentier E, Deruelle P, Bretelle F, Azria E, Blanc J, et al A snapshot of the Covid-19 pandemic among pregnant women in France J Gynecol Obstet Hum Reprod. 2020;49:101826 doi:10.1016/j.jogoh. 2020.101826
76. Boyles GP, Thung S, Gabbe SG, Landon MB, Costantine MM. Practical considerations for pregnant women with diabetes and severe acute respiratory syndrome coronavirus 2 infection Am J Obstet Gynecol MFM. 2020;2:100210 doi:10.1016/j.ajogmf. 2020.100210
77. Smati S, Mahot P, Bourdiol A, Ploteau S, Hadjadj S, Cariou B, et al Euglycaemic ketoacidosis during gestational diabetes with concomitant COVID-19 infection Diabetes Metab. 2021;47:101181
78. Pikovsky M, Tan MY, Ahmed A, Sykes L, Agha-Jaffar R, Yu CKH. Euglycaemic ketoacidosis in pregnant women with COVID-19:Two case reports BMC Pregnancy Childbirth. 2021;21:427
79. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis Diabetes Obes Metab. 2020;22:1935–41
80. Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM, et al Management of hyperglycemia in hospitalized patients in non-critical care setting:An endocrine society clinical practice guideline J Clin Endocrinol Metab. 2012;97:16–38
81. U.S. Food and Drug Administration. . Enforcement policy for noninvasive remote monitoring devices used to support patient monitoring during the coronavirus disease 2019 (COVID-19) public health emergency (revised) Guidance for Industry and Food and Drug Administration staff. Available from: https://www.fda.gov/regulatory-information/searchfda-guidance-documents/enforcement-policy-non-invasive-remotemonitoring-devices-used-support-patient-monitoring-during[Last accessed on 2020 Sep 16]
82. Patanè L, Morotti D, Giunta MR, Sigismondi C, Piccoli MG, Frigerio L, et al Vertical transmission of coronavirus disease 2019:Severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth Am J Obstet Gynecol MFM. 2020;2:100145 doi:10.1016/j.ajogmf. 2020.100145
83. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al Detection of SARS-CoV-2 in different types of clinical specimens JAMA. 2020;323:1843–4
84. Penfield CA, Brubaker SG, Limaye MA, Lighter J, Ratner AJ, Thomas KM, et al Detection of SARS-COV-2 in placental and fetal membrane samples Am J Obstet Gynecol MFM. 2020:100133 doi:10.1016/j.ajogmf. 2020.100133
85. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn JAMA. 2020;323:1846–8
86. Egloff C, Vauloup-Fellous C, Picone O, Mandelbrot L, Roques P. Evidence and possible mechanisms of rare maternal-fetal transmission of SARS-CoV-2 J Clin Virol. 2020;128:104447 doi:10.1016/j.jcv. 2020.104447
87. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women:A retrospective review of medical records Lancet. 2020;395:809–15
88. Qiu L, Liu X, Xiao M, Xie J, Cao W, Liu Z, et al SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection Clin Infect Dis. 2020;71:813–7
89. Brown A, Shenker N. Experiences of breastfeeding during COVID-19:Lessons for future practical and emotional support Matern Child Nutr. 2021;17:e13088 doi:10.1111/mcn. 13088
Keywords:

COVID-19; gestational diabetes mellitus; hyperglycemia; pandemic; pre-gestational diabetes mellitus; pregnancy

© 2021 Journal of Family Medicine and Primary Care | Published by Wolters Kluwer – Medknow