Quantifying the Severity of Metopic Craniosynostosis: A Pilot Study Application of Machine Learning in Craniofacial Surgery : Journal of Craniofacial Surgery

Secondary Logo

Journal Logo

Original Articles

Quantifying the Severity of Metopic Craniosynostosis: A Pilot Study Application of Machine Learning in Craniofacial Surgery

Bhalodia, Riddhish BS; Dvoracek, Lucas A. MD; Ayyash, Ali M. MD; Kavan, Ladislav PhD; Whitaker, Ross PhD; Goldstein, Jesse A. MD

Author Information
Journal of Craniofacial Surgery 31(3):p 697-701, May 2020. | DOI: 10.1097/SCS.0000000000006215

Abstract

The standard for diagnosing metopic craniosynostosis (CS) utilizes computed tomography (CT) imaging and physical exam, but there is no standardized method for determining disease severity. Previous studies using interfrontal angles have evaluated differences in specific skull landmarks; however, these measurements are difficult to readily ascertain in clinical practice and fail to assess the complete skull contour. This pilot project employs machine learning algorithms to combine statistical shape information with expert ratings to generate a novel objective method of measuring the severity of metopic CS.

Expert ratings of normal and metopic skull CT images were collected. Skull-shape analysis was conducted using ShapeWorks software. Machine-learning was used to combine the expert ratings with our shape analysis model to predict the severity of metopic CS using CT images. Our model was then compared to the gold standard using interfrontal angles.

Seventeen metopic skull CT images of patients 5 to 15 months old were assigned a severity by 18 craniofacial surgeons, and 65 nonaffected controls were included with a 0 severity. Our model accurately correlated the level of skull deformity with severity (P < 0.10) and predicted the severity of metopic CS more often than models using interfrontal angles (χ2 = 5.46, P = 0.019).

This is the first study that combines shape information with expert ratings to generate an objective measure of severity for metopic CS. This method may help clinicians easily quantify the severity and perform robust longitudinal assessments of the condition.

Copyright © 2020 by Mutaz B. Habal, MD

You can read the full text of this article if you:

Access through Ovid