Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

The Morphology of the Infraorbital Nerve and Foramen in the Presence of an Accessory Infraorbital Foramen

Polo, Carolina L., DDS, MS*; Abdelkarim, Ahmed Z., BDS, MS*; von Arx, Thomas, Med Dent; Lozanoff, Scott, PhD*

doi: 10.1097/SCS.0000000000004889
Anatomical Studies

Background: The accessory infraorbital foramen (AIOF) is an anatomical variation associated with the infraorbital foramen (IOF) and nerve (ION). Its occurrence and neural contents have clinical implications regarding failure of loco-regional anesthesia and risk of neural damage during surgical interventions involving the maxillary region. Thus, morphologic characterization of the AIOF and neural contents as well as the spatial relationships to the IOF are potentially useful for optimizing surgical procedures. Additionally, predictive features of the AIOF based on its relationship to IOF morphology could enable the surgeon to anticipate its presence and proceed accordingly. The purpose of this study was to determine whether the presence of an AIOF and its neural contents affected the size, shape, and composition of the IOF and ION. The specific hypothesis tested was that the topography and fascicular composition of the ION and IOF differs between individuals possessing an AIOF and those lacking this anatomical variant.

Methods: Gross topographic features of the IOF (42 crania) were compared between specimens possessing (test) or lacking (control) an AIOF. Nerve fascicles of ION (60 cadaveric sides) were examined histologically and compared morphometrically between specimens presenting or lacking an AIOF. An additional sample of 30 crania was subjected to cone-beam computed tomography (CBCT) analysis to determine the course of the canal leading to the AIOF.

Results: The AIOF incidence was 47.6% (20 crania) and 32.1% of the sides (27 sides). A single AIOF was observed in 24 sides and double AIOF in three sides. The AIOF occurred bilaterally in 7 specimens (16.7%). The majority of AIOF (86.7%) were located superomedial to IOF. A slightly higher frequency of the AIOF was found in left side compared to the right. Using CBCT, a patient sample showed an AIOF incidence in 21 sides of 16 patients (65.6%). A single AIOF was observed in 19 sides. Only 1 double AIOF was found in the scans, whereas 3 were found in the dry skull group. The AIOF occurred bilaterally in 3 scans (10%). The majority of AIOF (90.4%) were located superomedial to the IOF based on the CBCT scans. The AIOF was consistently seen connected to the infraorbital canal and progressed superiorly and medially from the infraorbital canal to the maxillary surface. The size of the ION without an AIOF was not significantly different than the ION in the presence of an AIOF (1.45 × 106/1.32 × 106 μm2, P < 0.35) based on fascicular area. However, the number of ION fascicles was greater in specimens without an AIOF compared to those showing this feature (15.15/12.71, P < 0.04)

Conclusion: Results indicate that the area of the ION is not affected by an AIOF, suggesting that the field of innervation of this area is not modified by its occurrence. However, the ION appears to divide more proximally into its component branches when the AIOF is present.

*Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawai’i, Honolulu, HI

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Address correspondence and reprint requests to Dr Scott Lozanoff, PhD, Department of Anatomy, Biochemistry and Physiology, University of Hawai’i School of Medicine, Honolulu, HI 96813; E-mail:

Received 25 January, 2018

Accepted 9 July, 2018

The authors report no conflicts of interest.

Supplemental digital contents are available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (

© 2019 by Mutaz B. Habal, MD.