Share this article on:

Combined Oral Contraceptives and Antiretroviral PK/PD in Malawian Women: Pharmacokinetics and Pharmacodynamics of a Combined Oral Contraceptive and a Generic Combined Formulation Antiretroviral in Malawi

Stuart, Gretchen S MD, MPHTM; Moses, Agnes MBBS; Corbett, Amanda PharmD; Phiri, Grace RN; Kumwenda, Wiza BS; Mkandawire, Nkhafwire BS; Chintedze, Joseph BA; Malunga, Gabriel BA; Hosseinipour, Mina MD, MPH; Cohen, Myron S MD; Stanczyk, Frank Z PhD; Kashuba, Angela D.M PharmD

JAIDS Journal of Acquired Immune Deficiency Syndromes: October 1st, 2011 - Volume 58 - Issue 2 - p e40-e43
doi: 10.1097/QAI.0b013e31822b8bf8
Letters to the Editor

*Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC; †UNC-Project, Lilongwe, Malawi; ‡School of Pharmacy and §Institute for Infectious Diseases and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, NC; and ‖Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA.

The authors have no conflicts of interest to disclose.

Presented in part at the 18th Conference on Retroviruses and Opportunistic Infections (CROI 2011), February 27 to March 2, Boston, MA.

Supported by NIH 5K12 HD050113 (Women's Reproductive Health Research Faculty Scholar Award) and the Center for AIDS Research at University of North Carolina (NIH 9P30 AI050410).

To the Editors:

Over 16 million reproductive-age women are HIV positive.1 Access to antiretrovirals (ARVs) for HIV treatment is expanding, and like the HIV epidemic, more than half of all ARV users are women.2 The fusion of contraceptives to ARVs for HIV treatment and Pre-Exposure Prophylaxis (PrEP) is on the horizon, because similar to ARVs, effective contraception, such as combined oral contraceptives (COCs), saves lives and lowers the burden of HIV on individuals and society.3 The COC is the second most popular contraceptive worldwide, is inexpensive, and easy to store and dispense.4 However, HIV-positive women on common ARV regimens are advised to avoid COCs by guidelines and monographs.5-7 Decreased serum concentrations of contraceptive steroids are reported when ARVs such as nevirapine (NVP) and lopinavir/Ritonavir are taken concomitantly.8-11 However, whether the decrease in steroid concentration truly results in failure of COC effectiveness is unknown because data on clinical outcomes such as pregnancy or ovulation are limited.12,13

Understanding interactions between ARV and oral contraceptives has recently become an even more urgent matter for research. First, the preliminary reported results from FEM Pre-Exposure Prophylaxis (Study to Assess the Role of Truvada in Preventing HIV Acquisition in Women) indicate that women taking oral contraceptives and a daily fixed dose tenofovir/emtricitabine combination had the highest proportion of pregnancies (9%).14 Although investigations are ongoing to understand the basis for this finding, there are no data describing the effect of these drugs on ovulation in women taking oral contraceptives. Second, the promising findings from HIV Prevention Trials Network 052 (Preventing Sexual Transmission of HIV with Anti-HIV Drugs)15 highlight the need to ensure HIV-positive women on ARVs have equal opportunities for fertility control. The objective of our study was to assess the feasibility of measuring anovulation in a PK study of COCs and ARVs in women in Malawi.

Back to Top | Article Outline


The Malawi National Health Sciences Research Committee and the Institutional Review Board at the University of North Carolina at Chapel Hill approved the study protocol. The trial was registered at (NCT00998725). Women with documented HIV status who chose the Malawi Ministry of Health-supplied COC [30 μg ethinyl estradiol/300 μg norgestrel] for birth control were recruited into 3 groups; HIV positive taking ARVs (a generic formulation of NVP 200 mg + stavudine 30 mg + Lamivudine 150 mg taken twice daily; group 1), HIV-positive women not requiring ARVs (group 2), and HIV negative (group 3).

Women were invited to enroll if they met the following eligibility criteria; 21-35 years old, known HIV status, able to attend all study visits, desired to prevent pregnancy for at least 6 months, had no known history of infertility, a hemoglobin greater than 10 mg/dL, body mass index greater than 18.5 kg/m2, no use of medications known to interfere with the cytochrome P450 system, no use of hormonal contraception in the previous 6 months, menses every 21-35 days lasting at least 4 days, and known last menstrual period. Group 1 women must have used ARVs for at least 48 consecutive days before enrollment with reported adherence to treatment and nonhormonal contraception for the duration of the study.

Women in group 1 (HIV positive on ARVs) returned for serum progesterone sampling between days 20 and 22 of their first menstrual cycle after enrollment and then started COCs immediately afterward. Women in groups 2 (HIV positive not taking ARVs) and 3 (HIV negative) started COC immediately upon enrollment. Follow-up visits were performed on day 14 of COC cycle 1, and the PK visit occurred on day 14 of COC cycle 2.

We used an abbreviated, 8-hour sampling strategy due to logistical issues for patients traveling long distances on public transportation. Adherence to medications for 3 days before arrival was recorded. Women were rescheduled if nonadherence was reported for more than 10% of doses. Reimbursement for transportation and snacks and breakfast were provided to all participants. Blood sampling occurred immediately before observed ingestion of morning medications (Time0), with subsequent sampling 0.5, 2, 4, 6, and 8 hours later. The 8-hour truncated sampling scheme included the terminal elimination phase for all drugs examined, even though the dosing intervals for ARVs and COCs are 12 and 24 hours, respectively.16,17 At the conclusion of the PK visit, all women were referred to a local family planning clinic to continue their health care.

Validated assays for NVP, stavudine, and Lamivudine were used.18 Because norgestrel is a racemic mixture of levonorgestrel (LNG) and dextronorgestrel, assays for LNG were used and those results reported. Assays for LNG and EE were determined by validated radioimmunoassays.19,20 Genotyping was performed for cytochrome P450 2B6 516.

Pharmacokinetic measurements were calculated using noncompartmental methods. The log-linear trapezoidal method was used to calculate the values for area under the curve (AUC0-8hr). Values for AUC0-24hrs were derived using λz extrapolations.

Back to Top | Article Outline


Nine women enrolled, 3 in each group, and all attended all study visits. Age and body mass index were similar between the 3 groups. The women in group 1 (HIV positive on ARVs) had been on ARVs for 121 days before starting COCs (range, 95-147 days). In the pre-COC cycle, 2 of the 3 women had serum progesterone levels greater than 3.0 ng/mL (8.0, 21 ng/mL) indicating ovulation and 1 woman had serum progesterone of 1.0 ng/mL.

Contraceptive steroid measurements were higher in both groups of HIV-positive women than in the HIV-negative women (Table 1). The median C 0hr for LNG in the 3 groups were higher than the reported minimal concentration of 0.3 ng/mL required to maintain contraceptive effectiveness. The LNG AUC measurements, and all EE PK parameters, were also higher in both groups of HIV-positive women than the HIV-negative women. The progesterone measurements in COC cycle 2 in the women in group 1 were <0.2 ng/mL (indicating anovulation).21,22 Two women had NVP levels 2-fold to 4-fold higher than the third. Cytochrome P450 2B6 516 genotypic analysis revealed that these 2 women were heterozygous for the T allele (GT), and the third woman had a wild-type (GG) genotype.



Back to Top | Article Outline


We found a number of surprising results among the HIV-positive and HIV-negative Malawian women in our study. The EE and LNG levels were higher in all the HIV-positive women, including those taking ARVs, than in HIV-negative women. This important finding challenges current dogma that COCs will not be effective when used concomitantly with NVP. Additionally, we confirmed that the COCs maintained effectiveness in these women by demonstrating anovulation. Despite the small sample size, and our truncated PK sampling scheme, we believe our findings justify further PK/PD investigations of HIV-positive women using ARVs and COCs, in multiple, real-life settings.

Two factors may contribute to our findings of higher contraceptive steroid concentrations than expected. First, women were dosed to steady-state conditions when they presented for PK/PD blood sampling. In contrast, previous PK data collection for contraceptive steroids have often focused only on EE, occurred before steady state was reached, or were collected from healthy volunteers.6-11,23 Second, there may be metabolic or pharmacogenetic differences in metabolism of contraceptive steroids in Malawian women compared with women previously investigated in the United States.

As we expected, concentrations of all ARVs were similar to previous PK studies in Malawi despite the addition of LNG and EE.17 The presence of the cytochrome P450 2B6 516 T allele in this small cohort likely explains the higher NVP concentrations in 2 of the women.24

An important strength of our methods was measuring LNG in addition to EE. The progestin component of COCs is primarily responsible for the anovulation effect COCs, whereas the EE stabilizes the endometrium and potentiates the progestin effects.25 Progestin also exerts additional contraceptive effects by thickening cervical mucus, decreasing tubal motility, or making the endometrium inhospitable to a fertilized egg.25 However, a definitive, and validated, measure for COC efficacy is to use serum progesterone of <3 ng/mL as presumptive evidence of anovulation.21

Our study is limited by small sample size, but the methods reported are important and justify further investigation of women taking COCs and ARVs concomitantly in real-life clinical settings. The findings reported can be used to inform future investigations. The focus on COCs deserves special mention because although COCs are not the most effective contraceptive available, they are the second most popular method worldwide.4,26,27 Therefore, understanding clinical outcomes of COCs in women taking ARVs should be a priority, especially in settings where HIV prevalence is greater than 10%. HIV-positive women are currently precluded from use of COC primarily because PK data are interpreted without PD data, in small subsets of women. Investigations should determine whether COCs represent an appropriate option for HIV-positive women taking ARVs, and for HIV-negative women who may use ARV-containing Pre-Exposure Prophylaxis.

Back to Top | Article Outline


The authors acknowledge and thank all the administrative and clinical staff at the Bwaila family planning clinics and Sam Phiri and staff of the Lighthouse HIV Clinic and counseling and testing center for their cooperation and assistance in this study. The authors also thank all the staff of the University of North Carolina Project for the accurate, caring, and excellent work in the implementation of this study. Finally the authors thank the study participants who provided data that the authors hope eventually will translate into improved services for the HIV-positive women in Malawi.

Gretchen S. Stuart MD, MPHTM*

Agnes Moses, MBBS†

Amanda Corbett, PharmD‡

Grace Phiri, RN†

Wiza Kumwenda, BS†

Nkhafwire Mkandawire, BS†

Joseph Chintedze, BA†

Gabriel Malunga, BA†

Mina Hosseinipour, MD, MPH§

Myron S. Cohen, MD§

Frank Z. Stanczyk, PhD‖

Angela D.M. Kashuba, PharmD†

*Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC

†UNC-Project, Lilongwe, Malawi

‡School of Pharmacy and

§Institute for Infectious Diseases and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, NC and

‖Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA

Back to Top | Article Outline


1. UNAIDS report on the global HIV/AIDS epidemic: 2010. Available at: Accessed April 15, 2011.
2. UNAIDS. AIDS scorecards. Overview UNAIDS report on the global AIDS epidemic: 2010. Available at: Accessed April 15, 2011.
3. Reynolds HW, Janowitz B, Wilcher R, et al. Contraception to prevent HIV-positive births: current contribution and potential cost savings in PEPFAR countries. Sex Transm Infect. 2008,84:ii49-ii53.
4. United Nations. World contraceptive use 2009. Available at: Accessed April 15, 2011.
5. DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services; January 10, 2011. Available at: Accessed April 15, 2011.
6. Kaletra. Physician prescribing information. North Chicago, IL: Abbott Laboratories.
7. Viramune. Physician prescribing information. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; 2005.
8. Leitz G MD, McDonough M, et al. Nevirapine (Viramune) and ethinyl estradiol/noethindrone [Ortho-Novum 1/35 (21 pack) EE/NET] interaction study in HIV-1 infected-women. Abstract #89. Paper presented at: 7th Conference on Retroviruses and Opportunistic Infections; January 31 to February 4 2000; San Francisco, CA.
9. Sevinsky H, Eley T, Persson A, et al. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther. 2011;16(2):149-156.
10. Carten M KJ, Kwara A, et al. Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel and efavirenz. Abstract 934. Presented at: 17th Conference on Retroviruses and Opportunistic Infections; 2010; San Francisco, CA.
11. Database of Antiretroviral Drug Interactions. post=7. Accessed April 15, 2011.
12. World Health Organization. Review of priorities in research. Hormonal contraception and IUDs and HIV infection. Report of a technical meeting. Geneva; 13-15 March, 2007. Accessed April 15, 2011.
13. Goldzieher JW, Stanczyk FZ. Oral contraceptives and individual variability of circulating levels of ethinyl estradiol and progestins. Contraception. 2008;78:4-9.
14. FEM-PrEP Project. FHI to initiate orderly closure of FEM-PrEP. Available at: Accessed April 18, 2011
15. Treating HIV-infected people with antiretrovirals protects partners from infection. Findings result from NIH-funded international study. NIH News Release. Available at: Accessed April 15, 2011.
16. Mildvan D, Yarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr. 2002;29:471-477.
17. Hosseinipour MC, Corbett AH, Kanyama C, et al. Pharmacokinetic comparison of generic and trade formulations of lamivudine, stavudine and nevirapine in HIV-infected Malawian adults. AIDS. 2007;21:59-64.
18. Rezk NL, Tidwell RR, Kashuba AD. Simultaneous determination of six HIV nucleoside analogue reverse transcriptase inhibitors and nevirapine by liquid chromatography with ultraviolet absorbance detection. J Chromatog B Analyt Techno Biomed Life Sci. 2003;791:137-147.
19. Stanczyk FZ, Hiroi M, Goebelsmann U, et al. Radioimmunoassay of serum d-norgestrel in women following oral and intravaginal administration. Contraception. 1975;12:279-298.
20. Price TM, Dupuis RE, Carr BR, et al. Single- and multiple-dose pharmacokinetics of a low-dose oral contraceptive in women with chronic renal failure undergoing peritoneal dialysis. Am J Obstet Gynecol. 1993;168:1400-1406.
21. Speroff L, Fritz MA. Female infertility. In: Leon Speroff and Marc A. Fritz, eds. Clinical Gynecologic Endocrinology and Infertility. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:1013-1068.
22. Grimes DA, Godwin AJ, Rubin A, et al. Ovulation and follicular development associated with three low-dose oral contraceptives: a randomized controlled trial. Obstet Gynecol. 1994;83:29-34.
23. El-Ibiary SY, Cocohoba JM. Effects of HIV antiretrovirals on the pharmacokinetics of hormonal contraceptives. Eur J Contracept Reprod Health Care. 2008;13:123-132.
24. Haas DW, Bartlett JA, Andersen JW, et al. Pharmacogenetics of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clin Infect Dis. 2006;43:783-786.
25. Speroff L, Fritz MA. Oral contraception. In: Leon Speroff and Marc A. Fritz, eds. Clinical Gynecologic Endocrinology and Infertility. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:861-942.
26. Trussell J. Contraceptive failure in the United States. Contraception. 2011;83(5):397-404. [Epub ahead of print].
27. Sullivan TM, Bertrand JT, Rice J, et al. Skewed contraceptive method mix: why it happens, why it matters. J Biosoc Sci. 2006;38:501-521.
Copyright © 2011 Wolters Kluwer Health, Inc. All rights reserved.