Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Initial In Vivo Experience With a Novel Type of MR-Safe Pushable Coils for MR-Guided Embolizations

Homagk, Ann-Kathrin PhD*; Umathum, Reiner PhD*; Bock, Michael PhD; Hallscheidt, Peter MD

doi: 10.1097/RLI.0b013e3182856a6f
Original Articles
Buy

Objective Conventional detachable embolization coils are made from platinum or stainless steel and may thus be a magnetic resonance (MR) safety hazard because of resonant device heating. The objective of this experimental study was to assess the feasibility of MR-guided embolization procedures with a novel type of nonmetallic and, therefore, intrinsically MR-safe pushable coil.

Materials and Methods The embolization coils are made from a polymer and coated with a hydrogel, which expands during contact with liquids. Magnetic resonance–guided embolizations were performed in 6 healthy domestic pigs by deploying up to 3 polymer pushable coils via an active tracking catheter under real-time magnetic resonance imaging monitoring. To assess the renal perfusion deficit induced by the coil embolization, intra-arterial 3-dimensional contrast-enhanced magnetic resonance angiography (3D ce-MRA) data sets were acquired before and every 5 minutes after coil placement until complete vessel occlusion.

Results The MR-guided embolizations were successful in 5 of the 6 animals. The 3D ce-MRA data sets indicated first perfusion deficits within 2 to 40 minutes after coil deployment. Complete vessel occlusion was achieved after 6 to 53 minutes. In 1 animal, no perfusion defect could be detected. Because our experiments were designed as a preliminary proof-of-concept study, different sizes and numbers of all-polymer hydrocoils were deployed at different anatomical positions, making the drawing of correlation between the size/number of deployed coils and the occlusion efficiency difficult. The all-polymer hydrocoils did not induce any artifacts on the MR images, either in the real-time MR images, which were recorded during the embolization, or in the subsequently acquired 3D ce-MRA images.

Conclusions Our results demonstrated that the novel all-polymer and intrinsically MR-safe pushable hydrocoils may become a promising tool for MR-guided embolization procedures.

From the *Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg; †Department of Radiology, Medical Physics, University Hospital Freiburg, Freiburg; and ‡Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg, Germany.

Received for publication October 1, 2012; and accepted for publication, after revision, December 30, 2012.

Conflicts of interest and sources of funding: Dr Bock’s work was partly funded by the grant BO 3025/2-1 from the German Science Foundation (DFG), Bonn, Germany.

Reprints: Ann-Kathrin Homagk, PhD, Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. E-mail: a.homagk@dkfz.de.

© 2013 by Lippincott Williams & Wilkins
/html> <