Share this article on:

Thoracoscopic Resection and Re-resection of an Anterior Chest Wall Chondrosarcoma

Hennon, Mark W. MD*†; Demmy, Todd L. MD*†

Innovations:Technology and Techniques in Cardiothoracic and Vascular Surgery: November/December 2012 - Volume 7 - Issue 6 - p 445–447
doi: 10.1097/IMI.0b013e318284b12b
Case Reports

The limits of thoracoscopic resections are expanding, with improved instruments for manipulating and dividing tissues such as the bone. We encountered a patient with a primary chest wall tumor that had exposure characteristics similar to our limited, but promising, experience with en bloc rib resections for primary lung cancer. A 71-year-old female patient presented with a symptomatic right meningocele, at which time a 7.7-cm left anterior mediastinal mass bulging through the second interspace was detected. With the patient in the lateral decubitus position, a modified three-incision approach similar to that for a video-assisted thorascopic surgery (VATS) lobectomy was performed but angled slightly different to expose the anterior chest wall. Using this approach, the mass was excised intact en bloc, with ribs 2 and 3 (9.5-cm total specimen with 6-cm longest rib). No chest wall reconstruction was necessary. The patient did well and had her chest tube removed on postoperative day (POD) 1, was discharged with minimal pain on POD 3, and was pain free on POD 14. Because a microscopic focus of chondrosarcoma was found at the second rib intramedullary margin on the final pathologic review, she returned for VATS re-resection of an additional 5 cm of rib on POD 43 using the same incisions, and her postoperative recovery was replicated. The operative times were 160 and 90 minutes, and blood loss was 400 and 100 mL, respectively. This case demonstrates that if traditional surgical values of exposure and oncologic safety can be replicated using enhanced instrumentation, it is reasonable to attempt more complex operations thoracoscopically. Even though ribs were removed, pain control was similar to other VATS operations.

From the *Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, NY USA; and †Department of Surgery, State University of New York at Buffalo, Buffalo, NY USA.

Accepted for publication November 23, 2012.

Presented at the Annual Scientific Meeting of the International Society for Minimally Invasive Cardiothoracic Surgery, June 8 – 11, 2011, Washington, DC USA.

Disclosures: Todd L. Demmy, MD, has received a one-time compensation for intellectual property and educational grants from Covidien, Mansfield, MA USA. Mark W. Hennon declares no conflict of interest.

Address correspondence and reprint requests to Mark W. Hennon, MD, Department of Thoracic Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 USA. E-mail:

Chondrosarcoma, the most common malignant tumor of the chest wall, is still a rare entity, resulting in limited reports describing results of surgical resection. Key elements of treatment involve complete excision with widely negative margins. Local recurrence portends a poor prognosis. The traditional surgical approach involves thoracotomy with en bloc chest wall resection.1 As minimally invasive techniques have continued to evolve in the surgical treatment of non–small cell lung carcinoma (NSCLC), the application of video-assisted thorascopic surgery (VATS) approaches for advanced-stage NSCLC has increased.2,3 As experience has grown, so has reliability. Low conversion rates are now commonplace despite the challenges of higher-stage tumors and the tissue effects brought on by induction chemoradiotherapy.3 Although thoracoscopic chest wall resection has been described for NSCLC,4 the use of thoracoscopy for the resection of primary chest wall tumors, including chondrosarcoma, has been limited by the exceedingly rare occurrence of this pathology and the unknown effects on long-term results.

Adoption of minimally invasive techniques for primary chest wall resection has not been extensively reported at present. Other surgical disciplines have adopted and described minimally invasive operations for which considerable bone ablation and manipulation are required. A limitation of these reports is that few have good comparison groups for examining recovery time and postoperative pain. No substantial evidence has validated pain physiology theories that might explain a potential benefit from a minimally invasive approach to a procedure that results in equivalent bone destruction as the standard approach.4 Until long-term results can be validated, which may take decades with certain pathologies such as chondrosarcoma, questions will persist regarding the oncologic equivalence of thoracoscopic approaches for more radical operations.

In the meantime, clinical scenarios will continue to arise and drive surgeons to expand potential indications for thoracoscopic approaches to more complex resections. Favorable anatomic tumor location and patient comorbidities that increase traditional thoracotomy risk will continue to prompt surgeons to use the evolving technology that allows for improved replication of open operations. This report describes the thoracoscopic chest wall resection of a primary chondrosarcoma (Figs. 1, 2) and subsequent re-resection as a reference for those considering adoption of this approach. Potential drawbacks and benefits are both demonstrated in this case.





Back to Top | Article Outline


The patient initially presented to her primary care physician with complaints of pain in the right upper portion of her back. Ensuing spine films demonstrated an anterior chest mass. Computed tomography (CT) of the chest followed, which confirmed an anterior mediastinal mass slightly to the left of the midline measuring 6.5 × 5.0 cm in size. The mass extended anteriorly into the left second intercostal space. There was a second smaller component immediately inferior to the main body of this mass but still within the anterior mediastinum in the extrapleural space that measured 2.2 × 2.7 cm. A third mass was identified in the extradural space in the right side in the right paravertebral region.

A positron emission tomographic/CT scan was then obtained, which noted a mass in the left inferior mediastinum bulging through the anterior second intercostal space, with a maximum standardized uptake value of 3.7. There were no enlarged or hypermetabolic mediastinal/hilar lymph nodes. There was a circumscribed fluid density in the right posterior paravertebral region at the T9 level measuring 2.5 × 2.1 × 3.5 cm and having a maximum standardized uptake value of 1.9. This was cystic and diagnosed as a meningocele or pseudomeningocele.

A CT-guided core needle biopsy of the left paramediastinal mass was performed, which reported cartilaginous tissue with mild hypercellularity favoring well-differentiated chondrosarcoma. Surgical resection of the chest wall mass was recommended.

At surgery, the patient was positioned in the standard right lateral decubitus position. A 15-mm incision was made in the posterior axillary line at the eighth intercostal space for the working camera port. The anterior mediastinal mass was able to be identified, and an assessment was made to determine whether there was lung involvement. There was none, and the tumor was also noted to be at a safe distance away from the phrenic nerve. It did seem to be invading the chest wall. Two more thoracoscopic incisions, one 4-cm anterior incision in the fifth intercostal space (deviation from a standard VATS lobectomy fourth intercostal access incision), and one 15-mm posterior incision were then created.

The parietal pleura was incised in a circumferential fashion around the anterior aspect of the mass on the chest wall with electrocautery. At the periphery of the mass, the second and third ribs were identified, and a LigaSure (Covidien, Mansfield, MA USA) cutting device was used to divide the intercostal neurovascular bundles. Thoracoscopic rib cutters (Medtronic Sofamor Danek Inc., Memphis, TN USA) were then used to divide the lateral aspect of the second and third ribs (Fig. 3). Dissection was then carried on the anterior aspect of the ribs toward the sternum. It was clear that the tumor invaded the ribs but did not invade anterior to the rib cage. With a combination of some gentle blunt dissection and LigaSure dissection, the mass en bloc with ribs 2 and 3 was dissected to the anterior border of the sternum. The dissection was then carried around inferiorly, freeing up some fatty attachments to the pericardium. With the ribs partially divided, the mass began to fall into the chest cavity. Further dissection was carried in the intercostal space of the second and third ribs as the mass began to fall into the chest cavity. With the mass completely mobilized, the medial aspect of the second and third ribs was identified at the costochondral junction of the sternum.



An additional 5-mm incision was required in the anterior superior aspect of the left side of the chest, and electrocautery was used to dissect through the cartilaginous portion of the second and third ribs adjacent to the sternum. With the cartilaginous portion of the ribs divided, the internal thoracic artery on the left was identified and controlled with the LigaSure energy sealing device. With the lateral and the medial aspect of the second and third ribs divided, the mass became even more mobile, and the medial attachments to the pericardium were able to be divided. The mass was completely freed. It was removed from the chest cavity in a 5 × 8–inch laparoscopic sac. The periphery of the dissection area was then marked with large hemoclips to identify the circumference of the resection. A 28F chest tube was brought out of the posterior inferior thoracoscopic incision.

Postoperatively, the patient did well, was able to have her chest tube removed on postoperative day (POD) 1, and was discharged home without event on POD 3. Unfortunately, the final pathology of the rib resection margins revealed a microscopic focus of intramedullary chondrosarcoma present at the lateral bony margin of rib 2, making re-resection necessary. Given the need for reoperation, the decision was also made to explore the right paraspinal mass at the time of her second operation.

For her second operation, the patient underwent right VATS with aspiration of her paraspinal cyst, making sure that the needle followed a percutaneous, extrapleural approach to prevent the development of cerebrospinal fluid leakage into the pleural cavity. Fluid analysis demonstrated beta transferrin, confirming cerebrospinal fluid. After intraoperative consultation with neurosurgery, no further intervention was required. The patient was then repositioned as previously described, and the re-resection of her left second rib was again approached thoracoscopically using the same incisions used for the initial resection. An additional 5 cm of the second rib was resected using the endoscopic rib cutter, after sufficient mobilization of the rib. The total area of chest wall resection was 103 cm2 when totaling both resections.

On the basis of the resultant chest wall defect size, chest wall reconstruction with a rigid or a nonrigid prosthesis was not performed. She was discharged home on POD 3 without event. She was off of narcotic pain medications by POD 10. The final pathology revealed grade 2/3 chondrosarcoma with negative margins. At 24 months from her initial surgery, there is no evidence of local or systemic recurrence or lung herniation through the chest wall defect. She is without symptoms.

Back to Top | Article Outline


Here, we describe the thoracoscopic resection and subsequent re-resection of a chest wall chondrosarcoma. Traditional treatment of malignant chest wall sarcomas has involved thoracotomy with en bloc chest wall resection, achieving wide margins. Our case demonstrates that despite requiring re-resection for microscopically positive margins, en bloc chest wall resection for primary malignant tumors of the chest is feasible thoracoscopically with appropriate patient selection. Our patient was able to be discharged home on POD 3 after both procedures and had minimal postoperative pain, requiring no narcotic pain medications by POD 10. At 24 months from her initial procedure, she remains without evidence of the disease.

As minimally invasive surgical instrumentation has evolved, and thoracoscopic surgical techniques have improved, thoracoscopic resection of locally advanced NSCLC, including those tumors with chest wall invasion, is now possible. Endoscopic rib cutters make thoracoscopic rib resection both feasible and safe (Fig. 3). Minimally invasive techniques have been described in the literature for other surgical subspecialties.5 Application of thoracoscopic techniques for the resection of primary chest wall malignancies, for a variety of reasons, has been slower than the adaptation of thoracoscopic techniques for primary lung carcinomas.

This particular case report emphasizes some of the potential advantages and challenges associated with thoracoscopic chest wall resection. We encountered a patient with a primary chest wall chondrosarcoma with anatomic features favorable for thoracoscopic resection using common thoracoscopic approaches and techniques that are promising for NSCLC. The chest wall defect, because of its size, did not require reconstruction with a rigid or a nonrigid prosthesis. Results from a large series of chest wall resections reported in 2006 showed that risk for postoperative complications increased as the total area of chest wall resected increased.6 Our resected area of 103 cm2 was only slightly greater than the median chest wall defect (81 cm2) from that series. The respiratory complication rate was no different in patients reconstructed with a rigid or a nonrigid prosthesis versus those who were not. Lung herniation was not reported for patients undergoing no reconstruction.6 For the above-mentioned reasons, potential for lung herniation was not felt to be a concern at the time of surgery. It has not been a problem postoperatively.

Unfortunately, in this case, a microscopically positive margin from the bone marrow required re-resection. Although clearly suboptimal, this was tolerated extremely well by the patient, potentially because of the minimally invasive nature of the procedures. For highly selected cases, minimally invasive approach for primary chest wall malignancy may be feasible and safe.

Back to Top | Article Outline


1. Rascoe PA, Reznik SI, Smythe WR. Chondrosarcoma of the thorax. Sarcoma. 2011;2011: 342879.
2. Nwogu CE, Glinianski M, Demmy TL. Minimally invasive pneumonectomy. Ann Thorac Surg. 2006; 82: e3–e4.
3. Hennon M, Sahai RK, Yendamuri S, Demmy TL, Tan W, Nwogu C. Safety of thoracoscopic lobectomy in locally advanced lung cancer. Ann Surg Onc. 2011; 18: 3732–3736.
4. Demmy TL, Nwogu CE, Yendamuri S. Thoracoscopic chest wall resection: what is its role? Ann Thorac Surg. 2010; 89: S2142–S2145.
5. Steffen T, Downer P, Steiner B, Hehli M, Aebi M. Minimally invasive bone harvesting tools. Eur Spine J. 2000; 9 (suppl 1): S114–S118.
6. Weyant MJ, Bains MS, Venkatraman E, et al.. Results of chest wall resection and reconstruction with and without rigid prosthesis. Ann Thorac Surg. 2006; 81: 279–285.

Thoracoscopic resection; Chondrosarcoma; VATS; Chest wall

Copyright © 2012 by the International Society for Minimally Invasive Cardiothoracic Surgery. Unauthorized reproduction of this article is prohibited.