Secondary Logo

Journal Logo

Clinical Science and Techniques

Piezosurgery: Basics and Possibilities

Schlee, Markus DDS*; Steigmann, Marius Dr.medic stom; Bratu, Emanuel DMD; Garg, Arun K. DMD§

Author Information
doi: 10.1097/
  • Free


A great number of studies demonstrate the high success rate of dental implants for both function and esthetics.1–4 However, osseointegrated implants are only as successful as the final restorations they ultimately support. So optimal positioning of the implant is critical. This focus on the final restoration gives rise to the terms “restoration-driven implant placement” and “reverse planning,” terms that are synonymous with the goal of positioning the implant not necessarily where the most bone is but in the position ideal for prosthetic finalization.5–9 This goal often means planning for osteoplasty in the oral region; in other words, bone grafting and bone regeneration to augment atrophic areas.

The modern science of implantology affords a variety of techniques for bone augmentation.10–12 To avoid micromovement and to exclude undesirable cells, a variety of barrier membranes can be used.13–17 Alternative bone grafting techniques include bone block transplants from the chin, lateral mandible, and iliac crest.18–25 Growth factors can be added in order to accelerate angiogenesis and healing, and to stabilize the graft.26–31 To avoid autologous bone transplants in bone with good density, the clinician may choose to perform alveolar ridge splitting.32–39 And, to treat vertical bone loss in the posterior maxilla and/or the pneumatization of the sinus after tooth loss, sinus floor elevation is usually the most effective therapy: through a crestal or lateral access, the schneiderian membrane is elevated without perforation, and the space between bone and membrane filled by the new graft.40–43

Piezo-electrical surgery can be used to perform many of the techniques described above, with distinct advantages over conventional surgical methods.

Materials and Methods

The Piezosurgery® device (Mectron, Italy), invented by Dr. Tomaso Vercellotti, uses a modulated functional working frequency of 25−30 kHz. At this frequency, only bone can be cut. In order to cut soft tissue, a frequency of 50 kHz is needed. When used correctly, the device virtually cannot cut the schneiderian membrane, nerves, or periosteum, so the device is recommended in cases where avoiding contact with such structures is considered vital. Nonetheless, because the mechanical energy of the device is not used to completely cut mineral structures, the energy can be passed to the soft tissue as heat. As well, mechanical damage to the soft tissue is possible (e.g., injuring the schneiderian membrane due to high pressure). However, cooling is ensured via the device's pump system. For effective cooling, the solution is refrigerated at 4°C. The flow rate and the intensity of the oscillation can be regulated.

The handpiece can be fitted with different tips for osteoplasty, osteotomy, separating soft tissue from bone, and cutting bone. For example, osteoplasty for the collection of bone particles can be executed through the use of handpiece insert osteoplasty No. 1 or insert osteoplasty No. 3. Combining 2 settings creates the working frequency of the instrument tips: 1 modulated horizontal setting of 60−200 μm and 1 vertical modulated setting of 20−60 μm. When compared to oscillating micro-saws, the movement of the Piezosurgery® scalpel tip is very small. The cutting is more precise and causes less discomfort for the patient.

When using conventional micro-saws, the clinician must apply a certain degree of pressure. By contrast, the Piezosurgery® device needs only a very small amount of pressure, which enables a highly precise cut. Too much pressure limits the movement of the tip, and heat is generated. At maximum pressure, when the tip of the instrument does not move and only heat is generated, a tone warns that bone damage is imminent. The translation speed (the speed from the tip of the instrument in contact with the bone) and the form of the tip material (diamond headed, sharp, with irregularities) have an effect on the cutting power. The operator can intuitively learn how fast a certain tip can be moved. The power of the device is 5 W (ultrasonic scaler 2 W). More power increases the cutting ability, but the device requires thicker tips, which cause thicker and more imprecise cuts. The 5-W power is the ideal compromise between speed and precision.

The bone harvest site remains almost free of blood during the cutting procedure. The reason lies in the cavitation effect created by the cooling fluid distribution and by the kind of vibration the instrument generates. By contrast, in a micro-saw, blood is moved in and out of the cutting area. However, with the piezo-instrument and its high frequency vibration in all directions, blood is essentially washed away. The consequence is an ideal visibility of the operating field. Thus, when used properly, Piezosurgery® causes less damage to the bone at the structural and cellular level compared with other techniques.44 No other system on the market fulfills these criteria.

Oral Surgery Techniques

Specific oral surgery indications documented for using the Piezosurgery® device include dental extraction, osteogenic distraction, ridge expansion (crestal splitting), endodontic surgery, bone harvesting (chips and blocks), maxillary sinus lift, third molar extraction, alveolar nerve decompression, and cyst removal.45 Of particular interest to the implantologist are the harvesting techniques, ridge splitting, and sinus lift procedures.

Bone Chips

Bone chips have the role of space making and guides for bone regeneration (through osteoconduction), and also for support of growth factors at the recipient site in order to speed up bone healing.46–48 The chips are technically not transplants because the osteocytes, lacking a blood supply, do not survive. During the healing period, the chips are replaced by bone via remodeling. Autogenous bone chips are easy to harvest from the drill surface, but this bone powder is resorbed too fast, and cannot fulfill its role as a space maker and guide. Particles with sufficient volume are needed. Clinically, particles of 500 μm show best results. This particle size can be obtained with bone mills.49 However, bone mills have the disadvantage of a high price and loss of bone material.

The Piezosurgery® device is well adapted for bone chip harvesting.50 The osteoplasty No. 1 to osteoplasty No. 3 tips can be used with gentle scratching movements along the surface of the bone in order to obtain sufficient bone chip volume (Fig. 1). The bone is accumulated in the front of the instrument and then removed. A complication-free region for bone chip harvesting is the linea obliqua in the mandible. The incision is similar to that used for the extraction of an eighth crestal incision retromolar and a mesial paramarginal incision. It is possible to harvest also in the vicinity of the operating area, eliminating the need for a second, surgical site.

Fig. 1.Fig. 2.Fig. 3.
Fig. 1.Fig. 2.Fig. 3.:
The Tipp osteoplasty No. 3 is designed to collect autogenous bone chips ideal for periodontal regeneration. The delicate access for the linea obliqua approach. Alveolar ridge splitting procedure can be combined with sinus floor elevation.

In periodontology, there are certain indications for autogenous bone transplants, considered the gold standard. In large flat defects around teeth, autologous bone provides better chances for healing. The success probability of regenerative measures in certain defects is low because of the anatomical conditions. Treating the defect with bone chips has advantages. The bone can be harvested with the osteoplasty No. 3 instrument from the linea obliqua and inserted in the defect.

Bone Blocks

The success of bone healing can be limited when particulate grafting material is used in nonstable spaces. In bone-surrounded spaces, particulate material works well, especially when membranes are used.51–53 However, the particulate materials show their limits in horizontal or vertical augmentation procedures. In these cases, bone blocks give the best results. Classic donor areas are the chin, linea obliqua, and crista iliaca.

In the linea obliqua procedure, a crestal incision in the retromolar area extends intrasulcularly or paramarginally to the anterior. A releasing incision is made in the premolar region for bone exposure. The osteotomy is made via Lindemann drills and rotating discs for the horizontal incision. This horizontal osteotomy needs a large uncovering in order to provide the clinician good access and to protect the soft tissue.

Piezosurgery® makes the linea obliqua approach easier (Fig. 2). The low amplitude of the instrument tip, the optimal cooling effect, and the selective cut ensure that no injury occurs to the neighboring structures. A small access that allows undermining preparation is sufficient, and no direct visibility of the deep horizontal cut and no preparation of the N. mentalis are necessary.

Bone Splitting

The previous techniques often have the disadvantage of requiring a second surgical (donor) site, usually requiring membranes. Additionally, implants usually cannot be simultaneously inserted after particulate or bone block grafts are used, so a second surgery follows. While particulated materials can be used combined with implant insertion, micromovement of the graft material can compromise the final result.

In cases with sufficient bone height but insufficient width, bone splitting may be indicated.38 No membranes are needed, and many complications are avoided (e.g., no transplants or biomaterials are used). In order to avoid bone resorption, a split thickness flap is elevated. The bone-splitting procedure respectively lingual separates the buccal from the palatal plate. The resulting space between the 2 plates has ideal regenerative and implant-integrating conditions. Augmentation materials are surrounded by bone, they have 2 directional blood vessel supplies and cell migration. There is no micromovement. These are the ideal conditions for low-risk healing. The risk of bone splitting, however, is pressure trauma, especially in D1 bone.54 Fractures represent no problem because the periosteum is not elevated. This greenstick fracture normally heals with no complications.

Bone splitting has been used primarily in the maxilla, where bone elasticity is greater. Piezosurgery® is used in dense mineralized bone because the vertical dimension of the bone is maintained while the width permits no implant insertion. In order to perform the case in 1 stage, bone splitting is performed.55 Because the alveolar crest will be larger after splitting, a split thickness flap is needed to cover the bone. A tension-free suture is possible in such cases. The periosteum, with its blood vessels, remains attached to the bone. An incision is made with a saw form tip (osteoplasty No. 5). Because the bone is elastic, no releasing incision on the buccal side is needed. The bone can be extended with osteotomes, and implants can be inserted in a combined drill-split technique. The remaining bone chips from the drills are sufficient for filling the space between the 2 lamellae. A tension-free suture can be performed without the use of membranes (Figs. 3–5).

Fig. 4.Fig. 5.Fig. 6.Fig. 7.
Fig. 4.Fig. 5.Fig. 6.Fig. 7.:
The expanded ridge. A 6-month result. The preparation of the lateral window is done with a round diamond tip. The initial dissection of the membrane is done with tip EL 1. The hydropneumatic pressure of the cooling medium helps to dissect the membrane.

Sinus Floor Elevation

The sinus floor elevation is now a routine procedure for the treatment of vertical deficiencies in the posterior maxilla.42 Lateral access is most common. The schneiderian membrane is prepared via a modified Caldwell-Luc technique. Membrane perforation is a risk with this procedure during the preparation of the window or during the elevation stage. In cases of recent closures of sinus-mouth communications, because of the presence of septae or for other reasons, the possibility of membrane perforation is high. Often, this perforation becomes a rupture that makes closure impossible, even with microsutures or membranes. An intact membrane is a precondition for stabilizing the graft.

Several of the risks associated with sinus lift procedures are reduced with Piezosurgery®.56 The instrument's selective cut makes it virtually impossible for the clinician to injure the membrane while preparing the window. In cases of a thin bone wall, the osteoplasty No. 5 tip is indicated, and in cases with thick bone, the osteoplasty No. 1 tip is used for reduction, and only then the osteoplasty No. 5 tip. The remaining bone chips are collected for the graft procedure.

Manual instruments are used for the membrane preparation and can lift the membrane 2 mm around the limits of the window. After this procedure, the Piezosurgery® EL2 and EL3 elevation instruments are used. These instruments perform as conventional sinus instruments, with micro-saw settings and hydropneumatic pressure applied through the cooling saline solution. In certain situations, a handheld instrument is needed (Figs. 6, 7).


Piezosurgery® is a relatively new surgical technique for periodontology and implantology that can be used to complement traditional oral surgical procedures, and, in some cases, replace traditional procedures. The low pressure applied to the instrument enables a precise cut; additionally, the selective cut characteristically protects soft tissues. Nerve transpositioning, sinus floor elevations, distraction osteogenesis, and a number of other sensitive procedures are easier and safer to perform with Piezosurgery®. As a result, even less experienced, though properly trained, surgeons can perform these techniques more effectively with Piezosurgery®.


Dr. Schlee claims to be a lecturer on behalf of Mectron, Italy. All other authors have no affiliation with this company or its products.


1. Jansen CE. Implant procedures 101. J Calif Dent Assoc. 2000;28:277–283.
2. McNutt MD, Chou CH. Current trends in immediate osseous dental implant case selection criteria. J Dent Educ. 2003;67:850–859.
3. ADA Council on Scientific Affairs. Dental endosseous implants: An update. J Am Dent Assoc. 2004;135:92–97.
4. Kazor CE, Al-Shammari K, Sarment DP, et al. Implant plastic surgery: A review and rationale. J Oral Implantol. 2004;30:240–254.
5. Garber DA, Belser UC. Restoration-driven implant placement with restoration-generated site development. Compend Contin Educ Dent. 1995;16:796.
6. Garber DA. The esthetic dental implant: Letting restoration be the guide. J Oral Implantol. 1996;22:45–50.
7. Sadan A, Blatz MB, Salinas TJ, et al. Single-implant restorations: A contemporary approach for achieving a predictable outcome. J Oral Maxillofac Surg. 2004;62:73–81.
8. Zadeh HH. Implant site development: Clinical realities of today and the prospects of tissue engineering. J Calif Dent Assoc. 2004;32:1011–1020.
9. Sclar AG. Strategies for management of single-tooth extraction sites in aesthetic implant therapy. J Oral Maxillofac Surg. 2004;62:90–105.
10. Stellingsma C, Vissink A, Meijer HJ, et al. Implantology and the severely resorbed edentulous mandible. Crit Rev Oral Biol Med. 2004;15:240–248.
11. Prato GP, Cairo F, Tinti C, et al. Prevention of alveolar ridge deformities and reconstruction of lost anatomy: A review of surgical approaches. Int J Periodontics Restorative Dent. 2004;24:434–445.
12. Del Fabbro M, Testori T, Francetti L, et al. Systematic review of survival rates for implants placed in the grafted maxillary sinus. Int J Periodontics Restorative Dent. 2004;24:565–577.
13. Hermann JS, Buser D. Guided bone regeneration for dental implants. Curr Opin Periodontol. 1996;3:168–177.
14. Pecora G, Baek SH, Rethnam S, et al. Barrier membrane techniques in endodontic microsurgery. Dent Clin North Am. 1997;41:585–602.
15. Watzinger F, Luksch J, Millesi W, et al. Guided bone regeneration with titanium membranes: A clinical study. Br J Oral Maxillofac Surg. 2000;38:312–315.
16. Bunyaratavej P, Wang HL. Collagen membranes: A review. J Periodontol. 2001;72:215–229.
17. Hammerle CH, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol. 2002;29:226–231.
18. Jensen J, Sindet-Pedersen S. Autogenous mandibular bone grafts and osseointegrated implants for reconstruction of the severely atrophied maxilla: A preliminary report. J Oral Maxillofac Surg. 1991;49:1277–1287.
19. Misch CM, Misch CE. The repair of localized severe ridge defects for implant placement using mandibular bone grafts. Implant Dent. 1995;4:261–267.
20. Triplett RG, Schow SR. Autologous bone grafts and endosseous implants: Complementary techniques. J Oral Maxillofac Surg. 1996;54:486–494.
21. Zeiter DJ, Ries WL, Sanders JJ. The use of a bone block graft from the chin for alveolar ridge augmentation. Int J Periodontics Restorative Dent. 2000;20:618–627.
22. Gapski R, Wang HL, Misch CE. Management of incision design in symphysis graft procedures: A review of the literature. J Oral Implantol. 2001;27:134–142.
23. Proussaefs P, Lozada J, Kleinman A, et al. The use of ramus autogenous block grafts for vertical alveolar ridge augmentation and implant placement: A pilot study. Int J Oral Maxillofac Implants. 2002;17:238–248.
24. Balaji SM. Management of deficient anterior maxillary alveolus with mandibular parasymphyseal bone graft for implants. Implant Dent. 2002;11:363–369.
25. Kahn A, Shlomi B, Levy Y, et al. The use of autogenous block graft for augmentation of the atrophic alveolar ridge. Refuat Hapeh Vehashinayim. 2003;20:54–64.
26. Tischler M. Platelet rich plasma. The use of autologous growth factors to enhance bone, soft tissue grafts. N Y State Dent J. 2002;68:22–24.
27. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18:93–103.
28. Lekovic V, Camargo PM, Weinlaender M, et al. Effectiveness of a combination of platelet-rich plasma, bovine porous bone mineral and guided tissue regeneration in the treatment of mandibular grade II molar furcations in humans. J Clin Periodontol. 2003;30:746–751.
29. Tozum TF, Demiralp B. Platelet-rich plasma: A promising innovation in dentistry. J Can Dent Assoc. 2003;69:664.
30. Roldan JC, Jepsen S, Miller J, et al. Bone formation in the presence of platelet-rich plasma vs. bone morphogenetic protein-7. Bone. 2004;34:80–90.
31. Wiltfang J, Kloss FR, Kessler P, et al. Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res. 2004;15:187–193.
32. Simion M, Baldoni M, Zaffe D. Jawbone enlargement using immediate implant placement associated with a split-crest technique and guided tissue regeneration. Int J Periodontics Restorative Dent. 1992;12:462–473.
33. Summers RB. A new concept in maxillary implant surgery: The osteotome technique. Compendium. 1994;15:152.
34. Scipioni A, Bruschi GB, Calesini G. The edentulous ridge expansion technique: A five-year study. Int J Periodontics Restorative Dent. 1994;14:451–459.
35. Engelke WG, Diederichs CG, Jacobs HG, et al. Alveolar reconstruction with splitting osteotomy and microfixation of implants. Int J Oral Maxillofac Implants. 1997;12:310–318.
36. Bruschi GB, Scipioni A, Calesini G, et al. Localized management of sinus floor with simultaneous implant placement: A clinical report. Int J Oral Maxillofac Implants. 1998;3:219–226.
37. Sethi A, Kaus T. Maxillary ridge expansion with simultaneous implant placement: 5-year results of an ongoing clinical study. Int J Oral Maxillofac Implants. 2000;5:491–499.
38. Palti A. Ridge splitting and implant techniques for the anterior maxilla. [Interview]. Dent Implantol Update. 2003;14:25–32.
39. Guirado JL, Yuguero MR, Carrion del Valle MJ, et al. A maxillary ridge-splitting technique followed by immediate placement of implants: A case report. Implant Dent. 2005;14:14–20.
40. Smiler DG. The sinus lift graft: Basic technique and variations. Pract Periodontics Aesthet Dent. 1997;9:885–893.
41. van den Bergh JP, ten Bruggenkate CM, Disch FJ, et al. Anatomical aspects of sinus floor elevations. Clin Oral Implants Res. 2000;11:256–265.
42. Kaufman E. Maxillary sinus elevation surgery: An overview. J Esthet Restor Dent. 2003;15:272–282.
43. Mazor Z, Peleg M, Garg AK, et al. Platelet-rich plasma for bone graft enhancement in sinus floor augmentation with simultaneous implant placement: Patient series study. Implant Dent. 2004;13:65–72.
44. Vercellotti T. Technological characteristics and clinical indications of piezoelectric bone surgery. Minerva Stomatol. 2004;53:207–214.
45. Piezoelectric Bone Surgery-Handbook. Piezosurgery®. November 2002. Available at: Accessed April 2, 2005.
46. Schlegel KA, Fichtner G, Schultze-Mosgau S, et al. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int J Oral Maxillofac Implants. 2003;18:53–58.
47. Hellem S, Astrand P, Stenstrom B, et al. Implant treatment in combination with lateral augmentation of the alveolar process: A 3-year prospective study. Clin Implant Dent Relat Res. 2003;5:233–240.
48. Artzi Z, Kozlovsky A, Nemcovsky CE, et al. The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material. J Clin Periodontol. 2005;32:193–199.
49. Cordaro L. Bilateral simultaneous augmentation of the maxillary sinus floor with particulated mandible. Report of a technique and preliminary results. Clin Oral Implants Res. 2003;14:201–206.
50. Robiony M, Polini F, Costa F, et al. Piezoelectric bone cutting in multipiece maxillary osteotomies. J Oral Maxillofac Surg. 2004;62:759–761.
51. Proussaefs P, Lozada J. The use of resorbable collagen membrane in conjunction with autogenous bone graft and inorganic bovine mineral for buccal/labial alveolar ridge augmentation: A pilot study. J Prosthet Dent. 2003;90:530–538.
52. Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol. 2003;8:328–343.
53. Hokugo A, Kubo Y, Takahashi Y, et al. Prefabrication of vascularized bone graft using guided bone regeneration. Tissue Eng. 2004;10:978–986.
54. Strietzel FP, Nowak M, Kuchler I, et al. Peri-implant alveolar bone loss with respect to bone quality after use of the osteotome technique: Results of a retrospective study. Clin Oral Implants Res. 2002;13:508–513.
55. Vercellotti T. Piezoelectric surgery in implantology: A case report-A new piezoelectric ridge expansion technique. Int J Periodontics Restorative Dent. 2000;20:358–365.
56. Vercellotti T, De Paoli S, Nevins M. The piezoelectric bony window osteotomy and sinus membrane elevation: Introduction of a new technique for simplification of the sinus augmentation procedure. Int J Periodontics Restorative Dent. 2001;21:561–567.

Abstract Translations


AUTOR(EN): Markus Schlee, DDS*, Marius Steigmann, Dr.medic.stom**, Emanuel Bratu, DMD***, Arun K. Garg, DMD****. *Privat praktizierender Arzt, Forchheim, Deutschland. **Privat praktizierender Arzt, Mannheim, Deutschland. ***Emanuel Bratu, Assistenzprofessor, Abteilung orale Implantologie, U.M.F Victor Babes, Timisoara, Rumänien. ****Klinischer Professor der Chirurgie, Fachbereich Gesichts- und Kieferchirurgie, Universität von Miami, Miller medizinische Fachhochschule, Miami, Florida; Privat praktizierender Arzt, Miami, Florida. Schriftverkehr: Dr. M. Steigmann, Leiblstr. 1, 68163 Mannheim, Deutschland. eMail:

Piezochirurgie: Grundlagen und Möglichkeiten

ZUSAMMENFASSUNG: Piezoelektrische Chirurgie ist eine Bereicherung der bisherigen chirurgischen Methoden, Knochen zu schneiden. Es ist keine Technik für “schnelle” Chirurgen. Es ist eher geeignet für operationstechnisch sensible und atraumatisch arbeitende Operateure. Der erforderliche geringe Anpressdruck ermöglicht genaueres Arbeiten (Mikrometric Cut). Die einzigartige Technik der selektiven Schnittführung (Selective Cut) schützt Weichgewebe zuverlässig. Weichgewebe kann mit etwa 50 kHz geschnitten werden, Hartgewebe bei einer Frequenz von 29 kHz, einer Frequenz, mit der diese Maschine arbeitet. Es ist also nicht möglich, Weichgewebe zu schneiden. Nervtranspositionen, Sinusbodenelevationen, Distraktionsosteogenesen werden dadurch sicherer. Auch weniger erfahrene Operateure können sich an diese Techniken wagen. Durch die laminar an der Ultraschallspitze laufende Kühllösung und die in horizontaler und vertikaler Richtung schwingende Spitze wird Blut zuverlässig aus dem Situs gespült. Eine “blutfreie” Chirurgie mit hervorragender Sicht wird möglich.

Spezielle Instrumentenspitzen eignen sich hervorragend zur Gewinnung von Knochenspänen in einer idealen Korngröße. Einsatzmöglichkeiten in der Parodontalchirurgie und Implantologie liegen auf der Hand.

Die sich permanent steigernde Vielfalt der Instrumentenspitzen wird noch weitere Einsatzbereiche erschließen (piezogestützte Osteotomtechnik, etc.).

SCHLÜSSELWÖRTER: Piezoelektrisches Knochenskalpell, Sinusbodenelevation, Kammspaltung, Knochenspanentnahme, atraumatische Knochenchirurgie, selektiver Schnitt


AUTOR(ES): Markus Schlee, DDS*, Marius Steigmann, Dr. medic.stom**, Emanuel Bratu, DMD***, Arun K. Garg, DMD.**** *Práctica Privada, Forchheim, Alemania. **Práctica Privada, Mannheim, Alemania. ***Profesor Asistente Emanuel Bratu del Departamento de Implantología Oral, U.M.F Victor Babes, Timisoara, Rumania. ****Profesor Clínico de Cirugía, División de Cirugía Oral y Maxilofacial, Facultad de Medicina Miller de la Universidad de Miami, Miami, Florida; Práctica Privada, Miami, Florida. Correspondencia a: Dr. M. Steigmann, Leiblster. 1, 68163 Mannheim, Germany. Correo electrónico:

Piezosurgery: Elementos básicos y posibilidades

ABSTRACTO: Útil en una cantidad de procedimientos de cirugía oral, la piezosurgery ofrece características terapéuticas mientras que un corte micrométrico (acción precisa y segura para limitar el daño a los tejidos, especialmente a osteocitos), un corte selectivo (que afecta a los tejidos mineralizados pero no los tejidos suaves circundantes) y un lugar quirúrgico claro (el resultado del efecto de cavitación creado por una solución de irrigación/enfriamiento y una punta oscilatoria). Debido a que la punta del instrumento vibra con diferentes frecuencias ultrasónicas, debido a que debe cortar los tejidos suaves y duros con frecuencias diferentes, el “corte selectivo” permite al clínico cortar tejidos duros mientras evita estructuras anatómicas finas (por ej., la membrana Schneideriana, tejido nervioso). El liquido de enfriamiento-irrigación es impulsado por una punta oscilatoria, haciendo posible obtener un enfriamiento eficaz y mayor visibilidad (a través del efecto de cavitación) comparado con los instrumentos convencionales de cirugía (sierras oscilantes y brocas giratorias), incluso en espacios profundos. Como resultado, las técnicas quirúrgicas de la implantología tal como cosecha de hueso (astillas y bloques), división del hueso crestal y elevación del piso del seno pueden realizarse con mayor facilidad y seguridad.

PALABRAS CLAVES: cuchilla de hueso, cosecha de hueso, cirugía sin trauma, corte selectivo.


AUTOR(ES): Markus Schlee, Cirurgião-Dentista*, Marius Steigmann, Dr.medic.stom**, Emanuel Bratu, Doutor em Medicina***, Arun K. Garg, Doutor em Medicina**** *Clínica Particular, Forchheim, Alemanha. **Clínica Particular, Mannheim, Alemanha. ***Emanuel Bratu Prof. Assist., Depto. de Implantologia Oral,U.M.F Victor Babes, Timisoara, Romênia. ****Professor Clínico de Cirurgia, Divisão de Cirurgia Oral e Maxilofacial, Faculdade Miller de Medicina da Universidade de Miami, Miami, Flórida; Clínica Particular, Miami, Flórida. Pedidos de reimpressão e correspondência para: Dr. M. Steigmann, Leiblster. 1, 68163 Mannheim, Germany. eMail:

Piezocirurgia: Fundamentos e Possibilidades

RESUMO: Útil numa variedade de procedimentos de cirurgia oral, a piezocirurgia tem características terapêuticas que incluem um corte micrométrico (ação precisa e segura para limitar o dano do tecido, especialmente para osteócitos), um corte seletivo (afetando tecidos mineralizados, mas não circundando tecidos moles), e um local cirúrgico claro (resultado do efeito de cavitação criado por uma solução de irrigação/resfriamento e ponta oscilante). Como a ponta do instrumento vibra em diferentes freqüências ultra-sônicas – já que tecidos duros e moles são cortados em diferentes freqüências – um “corte seletivo” permite que o clínico corte tecidos duros enquanto poupa finas estruturas anatômicas (p. ex., Membrana de Schneider, tecido de nervo). O fluido de resfriamento-irrigação é guiado por uma ponta oscilante, tornando possível obter resfriamento efetivo, bem como visibilidade mais alta (via efeito de cavitação) em comparação com instrumentos cirúrgicos convencionais (brocas giratórias e serras oscilantes), mesmo em espaços profundos. Como resultado, as técnicas cirúrgicas de implantologia tais como colheita de osso (tiras e blocos), cisão do osso da crista e elevação da superfície da cavidade podem ser realizadas com maior facilidade e segurança.

PALAVRAS-CHAVE: lâmina do osso, colheita de osso, cirurgia atraumática, corte seletivo





bone blade; bone harvesting; atraumatic surgery; selective cut

© 2006 Lippincott Williams & Wilkins, Inc.