Secondary Logo

Journal Logo

Clinical Science and Techniques

A Maxillary Ridge-Splitting Technique Followed by Immediate Placement of Implants: A Case Report

Guirado, Jose Luis Calvo PhD, DDS*; Yuguero, Maria Rosario Saez PhD, DDS*; Carrión del Valle, Maria Jose DDS; Zamora, Guillermo Pardo DDS

Author Information
doi: 10.1097/01.id.0000156390.58391.64
  • Free

Abstract

Maxillary alveolar atrophy is a long-standing problem that has prevented numerous patients from receiving treatment with dental implants.1 When maxillary anterior and posterior teeth are lost, resorption of the labial wall of the alveolar socket typically follows, often leaving only the previous palatal wall intact.2 In such cases, implant placement utilizing routine techniques is not possible. Numerous procedures have been devised to augment the alveolar crest with autogenous bone from sources such as the chin, ribs, and iliac crest, either with or without a barrier membrane.1,3–7 However, the risks of harvesting autogenous bone may include postoperative pain, nerve injury, arterial injury, cosmetic deformity, hemorrhage, and/or infection. In 1992, Simion et al8 introduced a split-crest bone manipulation technique. The goal was to create a self space-making defect by means of provoking a longitudinal greenstick fracture at the top of the bone that would split the atrophic crest into two parts. Implants could then be placed into the resulting fissure. This technique was indicated when a standard osteotomy could not be created because of a crest width of 4 mm or less. Various types of implants have been employed with the ridge-widening procedure introduced by Simion et al.2,8–12

This report describes a clinical case of severe maxillary alveolar atrophy in which a variation on the approach of Simion et al to ridge-splitting was used, followed by grafting with autogenous and bovine bone and placement of six 4-mm × 13-mm threaded self-tapping Osseotite implants (Implant Innovations, Inc., Palm Beach Gardens, FL). The treatment plan called for restoration with a Hader bar for retaining a maxillary palateless overdenture.

Materials and Methods

As described originally, alveolar ridge-splitting was achieved by tapping a chisel into the ridge and using the chisel to pry apart the two cortical plates. A standard implant placement protocol was then followed. Subsequently, clinicians have devised a number of variations on this approach.9,13–18

The authors have developed an approach to ridge splitting that gives the clinician more control over the procedure. To ease the plates apart in the gentlest manner possible and minimize the risk of fracturing the buccal plate, six separate instruments are employed: a carbide tungsten bur, a 2-mm chisel, three tapered osteotomes of increasing diameters, and a twist drill.

Threaded, self-tapping Osseotite implants are then placed into predetermined osteotomies within the channel thus created. The incremental cutting edge apical design of these implants offers a number of advantages. Placement requires 33% less insertion torque and can be accomplished in less time. In addition, the acid-etched surface is known to be a factor in increased success.19–26

Once the implants are placed, a mixture of bovine and autogenous bone is inserted into the defects surrounding the implants. The soft tissue is approximated, and the ridge is left to heal, unloaded, for a period of 6 to 9 months.

Case Reports

A 45-year-old male was referred by his general dentist for implant placement and prosthetic treatment. Clinical examination revealed an edentulous maxillary ridge with severe palatal and buccal bone resorption and loss of basal bone (Misch Class D atrophy) (Figs. 1 and 2). A crucial component of the authors’ ridge-widening technique is pre- and postsurgical evaluation of the edentulous region using life-sized computed tomography (CT) images. The CT scan is used initially to confirm the presence of at least 1 mm of cancellous bone between the cortical plates. In the absence of this space, the ridge-splitting technique described is not possible.

Fig. 1.Fig. 2.Fig. 3.
Fig. 1.Fig. 2.Fig. 3.:
Occlusal intraoral view of maxillary edentulous ridge before treatment. Frontal view of the clinical case. Panoramic radiograph of insufficient maxillary bone.

In the present case, the radiograph revealed the presence of cancellous bone between the plates. It also indicated an adequate bone height for implant placement (Fig. 3). However, the lateral CT view showed a knife-edge morphology throughout the maxilla. The frontal CT view confirmed sufficient bone height in the anterior maxilla, with a huge pneumatized maxillary sinus in the posterior.

Surgery was initiated with a full-crest maxillary incision made on the ridge in the bilateral premolar regions slightly toward the palate. In addition, vertical incisions (one central and two distal) were extended toward the buccal for the purpose of providing mucoperiosteal flap relief. The authors emphasize that limited flap reflection should be performed to expose only the ridge crest, with no attempt made to expose the buccal cortical plate. Such exposure might compromise blood supply and also allow for further unnecessary resorption of bone.

Using a Molt curette elevator, two mucoperiosteal flaps were elevated and sutured to both cheeks. At this point, the alveolar ridge was examined, and the width of the exposed alveolar ridge was judged to be approximately 1.5 mm in diameter in the anterior zone and 2.1 mm in the posterior zone. In addition, the buccal plate had a concave form (Fig. 4). A decision was made to proceed with the ridge-widening and implant placement. Had the ridge width been less than 1 mm, an alternative form of ridge widening (e.g., grafting with bone from the chin) would have been deemed necessary.

Fig. 4.Fig. 5.
Fig. 4.Fig. 5.:
Examination of the alveolar ridge revealed a knife-edge morphology. The alveolar crest is split longitudinally with a fissure carbide tungsten bur.

To gain access to the buccal cortical plates, the periosteum was elevated minimally in the region of the vertical releasing incisions, extending about 1 to 2 mm toward the edentulous area. Using a HM 31-D014 fissure carbide tungsten bur with a straight handpiece (Dental Care, Cox, Alicante, Spain), bilateral vertical cuts approximately 1 mm deep and 10 mm long were made on the buccal cortical plate in the posterior maxilla near the tuberosity to facilitate release of the bone.

The bur was then used to create a channel approximately 0.5 mm wide along the full length of the alveolar crest. Ideally, this channel should be approximately 10 mm deep to separate the cortical plates completely and reduce the incidence of cortical plate fracture (Fig. 5). Following the initial creation of the 0.5 mm-wide channel, a 2.0-mm diameter by 10-mm long chisel (Figs. 6 and 7) was used to begin separating the buccal cortical plate to the level of the nasal floor in the anterior and the maxillary sinus in the posterior. Thus, the channel was widened to approximately 2 mm, and a surgical template prepared preoperatively was placed on the ridge. A twist drill was used to mark the position and depth of the six implants up to 13 mm long.

Fig. 6.Fig. 7.
Fig. 6.Fig. 7.:
Frontal view of 2.0-mm chisel. Lateral view of 2.0-mm chisel.

Tapered osteotomes were used next, starting with an instrument that tapered from 1.0 to 2.30 mm and followed by one that tapered from 1.5 to 3.0 mm (Fig. 8). Care was taken to follow the path established in the bone with the twist drill; repositioning of the surgical guide may facilitate this. A slow and patient rotating motion was used to increase the separation of the plates by the tapered osteotomes (Fig. 9).

Fig. 8.Fig. 9.Fig. 10.Fig. 11.
Fig. 8.Fig. 9.Fig. 10.Fig. 11.:
The osteotomes are inserted into the bone crest. The alveolar crest has been widened to 4.7 mm without buccal plate fracture. Six Osseotite 3i implants have been placed. Expanded ridge with the implant cover screw in place; grafting material fills the voids around the implants in the widened alveolar crest.

To reduce the risk of cortical plate fracture, the twist drill was then used to extend each implant osteotomy to a depth of 13 mm. Finally, an osteotome that tapered from 2.9 to 3.8 mm was used with a rotating motion to widen each sulcus further. To maximize the bone/implant contact, no additional widening of the osteotomies was undertaken. Instead, six self-tapping Osseotite 4 × 13-mm implants were placed (Fig. 10). The defects around them were filled with bovine and autogenous bone harvested previously from maxillary tuberosity (Fig. 11).

The tissue was approximated (Fig. 12), and the patient was instructed not to wear any denture or place any pressure on the healing ridge until the Stage II surgery, which was scheduled for 6 months later. Second-stage surgery revealed that the implants were covered with regenerated bone of a D5 density according to the Misch classification system. The width of the ridge was approximately 4.75 mm, and the healing process appeared to be complete.

Fig. 12.Fig. 13.Fig. 14.Fig. 15.
Fig. 12.Fig. 13.Fig. 14.Fig. 15.:
The ridge, sutured with 3.0 braided silk. Hader bar in place on the implants. Final panoramic radiograph to confirm Hader bar fit. Final oral upper and lower rehabilitation in place.

Healing abutments were placed, and the soft tissue was approximated around them and allowed to heal for an additional month. Then, a palladium gold-cast Hader bar was installed (Fig. 13). An overdenture retained by Teflon clips was seated uneventfully, and no functional disorders were observed during 6 months of follow-up observation (Figs. 14 and 15).

Discussion

Splitting of the atrophic maxillary alveolar ridge to enable immediate implant placement is a complicated and demanding surgery, one that requires a long period of postoperative edentulism. However, the alternatives for patients with extremely thin ridges are often even less appealing. Many patients cannot wear complete dentures because of the loss of basal bone and unfavorable bone ridges. Widening of the ridge by more traditional grafting techniques usually requires invasive surgery and hospitalization, with the attendant risks of donor-site morbidity.

In contrast, the ridge-splitting technique presently described enables placement of the implants to be accomplished with the same number of surgeries required by standard (i.e., traditional) implant placement protocols. Compared with other ridge-splitting approaches that require 8 to 12 months, this technique allows for delivery of an overdenture 7 months after the implant placement surgery. Nine months of healing is recommended for delivery of a fixed prosthesis to allow bone healing and implant osseointegration and reduce implant failures.

Using a series of instruments to separate the ridge in a gentle and patient manner allows for subtle and successful manipulation of the bone, decreasing the likelihood of cortical plate fracture. Such a fracture need not be catastrophic. Should it occur, the bone can usually be repositioned and gentle pressure applied to stabilize it. However, the authors believe that the less trauma imposed on the bone during splitting of the ridge, the faster healing will occur.

Many maxillary ridge-widening techniques associated with osteotomes and immediate implant placement have used polytetrafluoroethylene or polyglactin 910 membrane mesh for guided tissue regeneration. Although successes have been reported,27–34 postsurgical complications are not uncommon. Affixing the membrane can be difficult, and any movement of the membrane may compromise the sutures, posing a subsequent risk to implant survival. Several studies have reported complication rates ranging from 20 to 50%.30–34

The authors believe the periosteum is the best possible membrane, containing a rich supply of osteogenic cells. Thus, use of a membrane is not recommended with this technique. Previous approaches to alveolar ridge splitting have not always recommended filling in the defects around the implants with bone-grafting material. However, such material provides a scaffold that both prevents the collapse of the cortical plates and accelerates healing.

Although cylindrical Osseotite implants were used for the present treatment, further evolution of the technique may lead to the use of tapered implants. To date, the authors have placed 106 implants in 22 patients with the present technique. Only four were lost throughout a 3-year follow-up period, a 98.6% success rate. The Osseotite surface contributed to the high, long-term success of the implants in these patients.

Conclusion

The ridge-splitting technique associated with immediate implant placement and bone augmentation is less invasive than traditional approaches to grafting the atrophic maxilla. The type of the implants used appear to be important for reducing the heat generated inside the bone because of the incremental cutting edge, avoiding cortical plate fracture, and improving the prosthetic results. In the present case, the 1.5 mm-wide alveolar ridge of the patient experienced a net gain of more than 3 mm, enabling placement of 4 mm-wide implants. This in turn allowed for better prosthetic support and superior esthetics.

This technique also makes it feasible to place implants into atrophic single-tooth and partially edentulous sites, as the additional control achievable by using multiple instruments to widen the ridge gently and gradually makes it easier to avoid the loss of bone around adjacent teeth. Ridge widening with this technique can be performed throughout the entire maxilla; alternatively, it may be an option before conventional denture fabrication.

Disclosure

The authors claim to have no financial interest in any company or any of the products mentioned in this article.

Acknowledgments

The authors are grateful for valuable material contributions and help from 3i (Implants Innovations Inc., Palm Beach, FL).

References

1. Jensen J, Sindet-Pedersen S, Oliver AJ. Varying treatment strategies for reconstruction of maxillary atrophy with implant: results in 98 patients. J Oral Maxillofac Surg. 1994;52:210–216.
2. De wijs FL, Cune MS. Immediate labial contour restoration for improved esthetics: a radiographic study on bone splitting in anterior single-tooth replacement. Int J Oral Maxillofac Implants. 1997;12:686–696.
3. Misch CM, Misch CE. The repair of localized severe ridge defects for implant placement using mandibular bone grafts. Implant Dent. 1995;4:261–267.
4. Sindet-Pedersen S, Enemark H. Reconstruction of alveolar clefts with mandibular or iliac crest bone grafts: a comparative study. J Oral Maxillofac Surg. 1990;48:554–558.
5. Isaksson S, Alberius P. Maxillary alveolar ridge augmentation with onlay bone-grafts and immediate endosseous implants. J Craniomaxillofac Surg. 1992;20:2–7.
6. Garg AK, Morales MJ, Navarro I, et al. Autogenous mandibular bone grafts in the treatment of the resorbed maxillary anterior alveolar ridge: rationale and approach. Implant Dent. 1998;7:169–176.
7. Oikarinen KS, Sandor GK, Kainulainen VT, et al. Augmentation of the narrow traumatized anterior alveolar ridge to facilitate dental implant placement. Dent Traumatol. 2003;19:19–29.
8. Simion M, Saldoni M, Zaffe D. Jawbone enlargement using immediate implant placement associated with a split crest technique and guided tissue regeneration. Int J Periodontics Restorative Dent. 1992;2:462–473.
9. Shimoyama T, Kaneko T, Shimizu S, et al. Ridge widening and immediate implant placement: a case report. Implant Dent. 2001;10:108–112.
10. Kao SY, Yeung TC, Chou IC, et al. Reconstruction of the severely resorbed atrophic edentulous ridge of the maxilla and mandible for implant rehabilitation: report of a case. J Oral Implantol. 2002;28:128–132.
11. Testori T, Weisman L, Woolfe S, et al. A prospective study of the osseotite implant. Four year interim report. Int J Oral Maxillofac Implants. 2001;16:193–200.
12. Calvo Guirado JL, Saez Yuguero MR, Ferrer Perez V, et al. Immediate anterior implant placement and early loading by provisional crowns. J Ir Dent Assoc. 2002;48:42–49.
13. Coatoam GW, Mariotti A. The segmental ridge-split procedure. J Periodontol. 2003;74:757–770.
14. Summers R. The ridge expansion osteotomy (REO). Compend. 1994;15:422–436.
15. Smiler DG. Surgical solutions to prosthetic problems. J Dent Symp. 1993;1:44–49.
16. Duncan JM, Westwood M. Ridge widening for the thin maxilla: a clinical report. Int J Oral Maxillofac Implants. 1997;12:224–227.
17. Lustmann J, Lewinstein I. Interpositional bone grafting technique to widen narrow maxillary ridge. Int J Oral Maxillofac Implants. 1995;10:568–577.
18. Wilson DJ. Ridge mapping for determination of alveolar ridge width. Int J Oral Maxillofac Implants. 1989;4:41–43.
19. Klokkevold PR, Nishimura RD, Adachi M, et al. Osseointegration enhanced by chemical etching of the titanium surface: a torque removal study in the rabbit. Clin Oral Implant Res. 1997;8:442–447.
20. Davies LE. Mechanisms of endosseous integration. Int J Prost. 1998;11:391–401.
21. Lazarra RL, Testori T, Porter SS, et al. A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int J Periodontics Restorative Dent. 1999;19:117–129.
22. Sullivan D, Sherwood RI, Mai TN. Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants. J Prosthet Dent. 1997;78:379–386.
23. Grunder U, Boitel N, Imoberdorf M, et al. Evaluating the clinical performance of the osseotite implant: defining prosthetic predictability. Compend Contin Educ Dent. 1999;20:628–633,636,638–640.
24. Lazzara R. Aesthetics, UCLA abutments and problem solving. In: Dental Implant Prosthodontics. Caswell CW, Clark AE, eds. Philadelphia: JB Lippincott; 1991:219–228.
25. Porter S, Lazzara R. Immediate restoration of dental implants in edentulous patients. 3i Clinical Case Report. 2001;3:1–4.
26. Lazzara RJ. Immediate implant placement into extraction sites: surgical and restorative advantages. Int J Periodontics Restorative Dent. 1989;9:334–343.
27. Schultz AJ, Gager AH. Guided tissue regeneration using an absorbable membrane (polyglactin 910) and osseous grafting. Int J Periodontics Restorative Dent. 1990;10:8–17.
28. Nyman S. Bone regeneration using the principle of guided tissue regeneration. J Clin Periodontol. 1991;18:494–498.
29. Nevins M, Mellonig JT. Enhancement of the damaged edentulous ridge to receive dental implants: a combination of allograft and GORE-TEX membrane. Int J Periodontics Restorative Dent. 1992;12:97–111.
30. Rominger JW, Triplett RG. The use of guided bone regeneration to improve implant osseointegration. J Oral Maxillofac Surg. 1994;52:106–113.
31. Gotfredsen K, Nimb L, Buser D, et al. Evaluation of guided bone regeneration around implants placed into fresh extraction sockets: an experimental study in dogs. J Oral Maxillofac Surg. 1993;51:879–886.
32. Gotfredsen K, Warrer K, HortinHansen E, et al. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. Clin Oral lmplants Res. 1991;2:172–178.
33. Warrer K, Gotfredsen K, HortinHansen E, et al. Guided tissue regeneration ensures osseointegration of dental implants placed into extraction sockets. Clin Oral lmplants Res. 1991;2:166–171.
34. Becker W, Becker S, Handelsman M, et al. Guided bone regeneration for implants placed into extraction sockets: a study in dogs. J Periodontol. 1991;62:703–709.

Abstract Translations [German, Spanish, Portugese, Japanese]

AUTOR(EN): Jose Luis Calvo Guirado, PhD, DDS****, Maria Rosario Saez Yugero, PhD, DDS*, Maria Jose Carrión del Valle, DDS**, Guillermo Pardo Zamora, DDS***. * Klinischer A.O. Professor der allgemeinen Zahnheilkunde, zahnmedizinische Fakultät, Universität von Murcia, Spanien. ** Facharzt für zahnheilkundliche Implantologie, zahnmedizinische Fakultät, Universität von Murcia, Spanien. *** Klinischer Assistenzprofessor der allgemeinen Zahnheilkunde, zahnmedizinische Fakultät, Universität von Murcia, Spanien. **** Klinischer A.O. Professor der allgemeinen Zahnheilkunde, zahnmedizinische Fakultät, Universität von Murcia, Spanien. Schriftverkehr: Jose Luis Calvo Guirado, PhD, DDS, Mozart Street #1, First Floor G. Murcia, Spanien, 30002. Telefon: (34) 968268353 / (34) 968933773, Fax: (34) 968268353. eMail:[email protected]

Eine Methode zur Kammspaltung im Oberkiefer mit sofortigem Einsatz von Implantaten: eine Fallstudie

ZUSAMMENFASSUNG: Alveolare Atrophie im Oberkiefer bringt häufig Einschränkungen für den Einsatz von Zahnimplantaten mit sich. Der vorliegende Artikel befasst sich mit der Weiterentwicklung einer Technik zur Weitung des atrophischen Kamms durch eine Längsspaltung des Alveolarknochens. Es wird die Behandlung eines Patienten mit stark resorbiertem, zahnlosem Oberkiefer beschrieben. In den gespaltenen Kamm wurden sofort sechs OSSEOTITE®-Gewindeimplantate (Implant Innovations Inc., Palm Beach, Florida) mit einem Durchmesser von 4 mm und einer Länge von 13 mm eingepflanzt und mit einer Mischung aus autogener Tuberositas und Rinderknochen umgeben. Als Vorteile dieser Methode ergeben sich für den Patienten unter anderem eine geringeres Risiko für postoperatives Trauma und verkürzte Behandlungszeiten.

SCHLÜSSELWÖRTER: Implantat, alveolare Atrophie im Oberkiefer, Kammspaltungstechnik, Knochengewebstransplantate

AUTOR(ES): Jose Luis Calvo Guirado, PhD, DDS#, Maria Rosario Saez Yuguero, PhD, DDS*; María José Carrión del Valle, DDS**, Guillermo Pardo Zamora, DDS***. *Profesor Asociado Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. **Especialista en Odontología de Implantes, Facultad de Odontología, Universidad de Murcia, España. ***Profesor Asistente Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. #Profesor Asociado Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. Correspondencia a: José Luis Calvo Guirado, PhD, DDS, Mozart Street #1, First Floor G, Murcia, Spain 30002. Correo electrónico:[email protected], Teléfono: (34) 968268353 / (34) 968933773, Fax: (34) 968268353.

Una técnica de división de la cresta maxilar seguida por la colocación inmediata de implantes: Informe de un caso

ABSTRACTO: La atrofía alveolar maxilar a menudo limita la colocación de implantes dentales. Este artículo explica la refinación de una técnica para ensanchar la cresta atrófica al dividir longitudinalmente el hueso alveolar. Se describe el tratamiento de un paciente con un maxilar edentuloso severamente reabsorbido. Seis implantes OSSEOTITE® de 4 mm de ancho por 13 mm de largo con rosca (Implant Innovations, Inc., Palm Beach, Florida) se colocaron inmediatamente dentro de la cresta divida y se rodearon con una mezcla de tuberosidad autógena y hueso bovino. Las ventajas de esta técnica para los pacientes incluyen menos trauma quirúrgico y menor tiempo de tratamiento.

PALABRAS CLAVES: implante, atrofía alveolar maxilar, técnica de cresta dividida, injerto de hueso

AUTOR(ES): Jose Luis Calvo Guirado, PhD, DDS#, Maria Rosario Saez Yuguero, PhD, DDS*; María José Carrión del Valle, DDS**, Guillermo Pardo Zamora, DDS***. *Profesor Asociado Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. **Especialista en Odontología de Implantes, Facultad de Odontología, Universidad de Murcia, España. ***Profesor Asistente Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. #Profesor Asociado Clínico de Odontología General, Facultad de Odontología, Universidad de Murcia, España. Correspondencia a: José Luis Calvo Guirado, PhD, DDS, Mozart Street #1, First Floor G, Murcia, Spain 30002. Correo electrónico:[email protected], Teléfono: (34) 968268353 / (34) 968933773, Fax: (34) 968268353.

Una técnica de división de la cresta maxilar seguida por la colocación inmediata de implantes: Informe de un caso

ABSTRACT: La atrofía alveolar maxilar a menudo limita la colocación de implantes dentales. Este artículo explica la refinación de una técnica para ensanchar la cresta atrófica al dividir longitudinalmente el hueso alveolar. Se describe el tratamiento de un paciente con un maxilar edentuloso severamente reabsorbido. Seis implantes OSSEOTITE® de 4 mm de ancho por 13 mm de largo con rosca (Implant Innovations, Inc., Palm Beach, Florida) se colocaron inmediatamente dentro de la cresta diuidida y se rodearon con una mezcla de tuberosidad autógena y hueso bovino. Las ventajas de esta técnica para los pacientes incluyen menos trauma quirúrgico y menor tiempo de tratamiento.

PALABRAS CLAVES: implante, atrofía alveolar maxilar, técnica de cresta dividida, injerto de hueso.

Figure
Figure
Keywords:

implant; maxillary alveolar atrophy; split-crest technique; bone grafts

© 2005 Lippincott Williams & Wilkins, Inc.