Secondary Logo

Journal Logo

CLINICAL SCIENCE AND TECHNIQUES

The Use of Implantoplasty and Guided Bone Regeneration in the Treatment of Peri-implantitis: Two Case Reports

Suh, Jong-Jin MSD, PhD; Simon, Ziv DMD, MSc; Jeon, Young-Sik MSD, PhD; Choi, Byeong-Gap MSD, PhD; Kim, Chong-Kwan MSD, PhD

Author Information
doi: 10.1097/01.ID.0000091139.04246.BC
  • Free

Abstract

Peri-implant disease (“peri-implantitis”) manifests as a microbial plaque-induced inflammatory process, 1–5 which could be preceded by occlusal overload 6 affecting the soft tissues and bone around osseointegrated dental implants. Left untreated, this condition will in most instances lead to progressive bone loss, implant loss, and the need for revisional treatment. However, reports of effective and predictable interventional methods of treatment for peri-implantitis are few. The rationale in current treatment approaches to peri-implantitis largely has been derived from established periodontal treatment modalities. It is generally thought that similarities in pathogenesis do exist between peri-implant disease and periodontitis because there are similar microbiota involved. 7–9 There is a correlation between the presence of plaque and peri-implant disease, 10 and with long-term implant success 11 and, on occasion, favorable responses to antimicrobials. 12 Although both surgical and nonsurgical approaches have been proposed, convincing data is lacking and the treatment of peri-implantitis remains empiric. 13

To be effective, early intervention is advisable to prevent significant bone loss, whether horizontal, vertical, or both. Guided bone regeneration with the use of membranes and various graft materials has been reported to be effective, 14–20 although no randomized and properly control-led studies have been published to date. The application of guided bone regeneration to the management of peri-implantitis usually involves implant surface debridement and detoxification, placement of a bone graft covered with a membrane, and resubmergence of the implant during the healing interval. Clinicians have suggested different detoxification agents such as tetracycline, 15,16,21 citric acid, 15,22–24 chlorhexidine gluconate, 25 and hydrogen peroxide. However, direct comparison to establish whether any of these agents is superior to the others in removing plaque organisms and their biofilms has not been done, and, again, their use is strictly empiric. A key consideration in this detoxification step is that roughened or “textured” implant surfaces, now commonly used for more challenging treatment scenarios (such as bone of low density), are more retentive to bacterial plaque if they become exposed to the oral cavity 13 and, therefore, more difficult to detoxify. Alternative nonchemical methods of implant surface decontamination also have been suggested. The use of lasers, 26–29 air abrasion, 30 or removal of the affected implant surface region have been described as being effective in this context. The last approach, ie, removal of the affected surface region, has been termed “implantoplasty” (or “fixture modification”31) and is aimed at modifying the implant’s surface using rotary instruments. 25 With textured implant surfaces, this approach renders the affected implant surface less plaque-retentive in the hopes of arresting progressive crestal bone loss. Implantoplasty in conjunction with guided bone regeneration was used in the treatment of peri-implantitis in the present series of 2 case reports.

Materials and Methods

Case No. 1

A 45-year-old healthy man with a noncontributory medical history was referred to Yonsei University Dental Hospital from a private practice. Two ITI (Straumann, Switzerland) solid screw implants (12-mm length × 4.1-mm diameter) had been placed 2 months earlier to replace teeth nos. 19 and 21 (lower left first premolar and molar) using the recommended single-stage surgery placement technique. The patient presented with a buccal swelling associated with the no. 21 implant and clinical examination revealed pus discharge from the associated gingival crevice (Fig. 1). Radiographically, a radiolucent lesion was noticed around the implant at the no. 21 site, but there was no detectable implant mobility (Fig. 2). At this time, the patient was prescribed Amoxicillin (500 mg 3 times a day for 1 week), and the site was irrigated with chlorhexidine gluconate (0.12%). One week later, a full-thickness mucoperiosteal flap was elevated around the affected implant, and advanced bone loss was seen largely limited to the buccal aspect (Fig. 3). The defect extended to the third thread. The defect area was debrided using hand instruments, including the removal of all granulation tissue. The affected textured implant surface was modified in an attempt to reduce its roughness using a high-speed handpiece and diamond burr under copious irrigation. A tetracycline solution (the contents of 1 250-mg capsule mixed with 5 mL saline) was applied to the modified implant surface for 5 minutes using cotton pellets (Fig. 4). Next, the cortical bone on the internal and external aspects of the defect was perforated to encourage bleeding using a round burr. Autogenous bone was harvested from the retromolar area of tooth no. 17 (lower left third molar) and particulated using hand instruments. Thereafter, the defect was filled with this autogenous bone graft material and the grafted site covered with a membrane (Gore-Tex® ePTFE; Gore, Newark, DE;Fig. 5). The flap was then repositioned using Gore-Tex sutures with complete membrane coverage (Fig. 6). The patient continued on the same Amoxicillin regimen (500 mg 3 times a day) for the first week of healing. At 6 months, the membrane was removed, and a complete defect fill appeared to have been achieved (Fig. 7). Radiographically, an increase in bone density was noted. The implants were restored thereafter with a 3-unit fixed bridge (Fig. 8).

Fig. 1.Fig. 2.Fig. 3.Fig. 4.
Fig. 1.Fig. 2.Fig. 3.Fig. 4.:
Pus discharge at the no. 21 implant with associated swelling. Radiolucent lesion around the no. 21 implant. Advanced bone loss on the buccal aspect of the no. 21 implant. Implant detoxification with tetracycline.
Fig. 5.Fig. 6.Fig. 7.Fig. 8.
Fig. 5.Fig. 6.Fig. 7.Fig. 8.:
Gore-Tex membrane placed in graft material. Primary closure of the grafted site using Gore-Tex sutures. Bone regeneration at 6 months after membrane removal. Radiographic indication for the increase in bone density around implant no. 21.

Case No. 2

A 33-year-old woman with a noncontributory medical history was referred to Yonsei University Dental Hospital from a private practice. Two ITI (Straumann) hollow cylinder-type implants (12 mm × 4.1 mm) had been placed 30 months earlier to replace teeth nos. 30 and 31 (lower right first and second molars) and had been in function for 2 years. The patient reported mild discomfort and presented with a slight buccal swelling and pus discharge from the gingival crevice of the implant at the no. 30 site (Fig. 9). She was prescribed Amoxicillin (500 mg 3 times a day for 1 week) starting 1 day preoperatively. In addition, the patient was asked to rinse with chlorhexidine gluconate (0.12%) twice daily for 30 seconds starting 1 day preoperatively and for the first 2 weeks postoperatively. A similar surgical approach as case no. 1 was applied. This included full-thickness flap elevation, defect debridement, decontamination with tetracycline (Figs. 10 and 11), and implantoplasty using a flame-shaped diamond burr. Bone was harvested from the surgical site (distal to the implant at the no. 30 site), and was placed in the defect and covered with a Gore-Tex membrane as before. The site was left to heal for 6 months after which the membrane was removed. At this time, almost complete bone fill was observed both clinically and radiographically (Figs. 12, 13, and 14). The original prosthesis was replaced on the rescued implants 1 month later.

Fig. 9.Fig. 10.Fig. 11.Fig. 12.
Fig. 9.Fig. 10.Fig. 11.Fig. 12.:
Buccal swelling and pus discharge at the no. 30 implant site. Advanced bone loss around the no. 30 implant after flap reflection. Radiographic bone loss around the no. 30 implant. Bone regeneration around the no. 30 implant after 6 months.
Fig. 13.Fig. 14.
Fig. 13.Fig. 14.:
Radiograph indicating bone regeneration around the no. 30 implant. Original prosthesis replaced on the rescued implants.

Discussion

Microbial infection of an implant’s surface could lead to the unfavorable result of implant loss and the need for retreatment. The case reports presented here demonstrated an early and late infection after implant placement (2 months and 2.5 years respectively). The time of the initial infection is not consistent, and therefore it is important to monitor restored implants for several years. Single-stage implants are as successful as two-stage implants; thus, both approaches harbor the risk for infection at any time. To minimize the risk of peri-implantitis, it is recommended to adhere to strict sterile surgical techniques as well as meticulous oral hygiene by the patient. Once a peri-implant inflammatory process has been detected, it is crucial to treat the infected area as soon as possible. Assuming absence of implant mobility and localized peri-implant bone destruction, a variety of treatment modalities have been proposed for the management of peri-implantitis. 25 These are mostly based on empiric experience and use the systemic administration of an antibiotic in conjunction with surgical intervention. To ensure decontamination of the affected implant surface(s), chemical and/or mechanical debridement is used. No detoxifying agent has been shown to be superior over others. The clinician can use one of the agents suggested in the literature in an empiric manner. For textured implant surfaces, detoxification using implantoplasty can also provide favorable results when used as part of the procedure. A graft material of choice can be used to replace the lost bone. It is the author’s opinion that whenever possible, autogenous bone should be used, because it is still considered to be the “gold standard” for grafting procedures. The use of a membrane is intended to contain the graft material and exclude epithelial cells from the guided bone-regeneration site. Optimally, a membrane should be present for the entire duration of the healing process; therefore, use of a nonresorbable membrane is advantageous and ensures its retention. After an implant repair procedure, a healing period should be allowed without loading. No specific healing period has been suggested in the literature; however, it is the author’s opinion that this healing period should be no less than the number of months allowed for healing after the implant initial placement. Successful repair of an ailing implant requires maximum attention to meticulous surface decontamination and creation of proper conditions for implant reintegration.

Summary

In the 2 cases reported here in which ITI implants developed localized peri-implantitis lesions, implantoplasty of exposed SLA (sandblasted, large-grit, acid-etched) and TPS (titanium plasma spray) surfaces followed by topical tetracycline decontamination were used in conjunction with guided bone regeneration with autogenous bone and ePTFE membranes, along with removal of implant loading in the second case. In both cases, the procedure was effective in arresting disease and regenerating lost bone, and these results suggest that the technique holds promise and should be investigated further.

Acknowledgments

The authors thank Dr. Douglas Deporter, Division of Periodontology, University of Toronto, for his helpful comments on the manuscript.

Disclosure

The authors claim to have no financial interest in any company or product mentioned in this article.

References

1. Rosenberg ES, Torosian JP, Slots J. Microbial differences in 2 clinically distinct types of failures of osseointegrated implants. Clin Oral Implants Res. 1991; 2: 135–144.
2. Rams TE, Roberts TW, Tatum H Jr, et al. The subgingival microbial flora associated with human dental implants. J Prosthet Dent. 1984; 51: 529–534.
3. Akagawa Y, Matsumoto T, Kawamura M, et al. Changes of subgingival microflora around single-crystal sapphire endosseous implants after experimental ligature-induced plaque accumulation in monkeys. J Prosthet Dent. 1993; 69: 594–598.
4. Pontoriero R, Tonelli MP, Carnevale G, et al. Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res. 1994; 5: 254–259.
5. Mombelli A, Oosten MA, Schurch E Jr, et al. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987; 2: 145–151.
6. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996; 7: 143–152.
7. Ericsson I, Berglundh T, Marinello C, et al. Long-standing plaque and gingivitis at implants and teeth in the dog. Clin Oral Implants Res. 1992; 3: 99–103.
8. Mombelli A, Buser D, Lang NP. Colonization of osseointegrated titanium implants in edentulous patients. Early results. Oral Microbiol Immunol. 1988; 3: 113–120.
9. Eke PI, Braswell L, Fritz M. Succession of putative peri-implant pathogens after root-form and plate—form implant placement in partially dentate adult monkeys. J Periodontal Res. 1995; 30: 88–96.
10. Berglundh T, Lindhe J, Marinello C, et al. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res. 1992; 3: 1–8.
11. Lindquist LW, Rockler B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent. 1988; 59: 59–63.
12. Mombelli A, Lang NP. Antimicrobial treatment of peri-implant infections. Clin Oral Implants Res. 1992; 3: 162–168.
13. Esposito M, Hirsch JM, Lekholm U, et al. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998; 106: 721–764.
14. von Arx T, Kurt B, Hardt N. Treatment of severe peri-implant bone loss using autogenous bone and a resorbable membrane. Case report and literature review. Clin Oral Implants Res. 1997; 8: 517–526.
15. Meffert RM. How to treat ailing and failing implants. Implant Dentistry. 1992; 1: 25–33.
16. Artzi Z, Tal H, Chweidan H. Bone regeneration for reintegration in peri-implant destruction. Compend Contin Educ Dent. 1998; 19: 17–20
17. Mellonig JT, Griffiths G, Mathys E, et al. Treatment of the failing implant: case reports. Int J Periodontics Restorative Dent. 1995; 15: 384–395.
18. Lehmann B, Bragger U, Hammerle CH, et al. Treatment of an early implant failure according to the principles of guided tissue regeneration (GTR). Clin Oral Implants Res. 1992; 3: 42–48.
19. Goldman MJ. Bone regeneration around a failing implant using guided tissue regeneration. A case report. J Periodontol. 1992; 63: 473–476.
20. Hammerle CH, Fourmousis I, Winkler JR, et al. Successful bone fill in late peri-implant defects using guided tissue regeneration. A short communication. J Periodontol. 1995; 66: 303–308.
21. Schenk G, Flemmig TF, Betz T, et al. Controlled local delivery of tetracycline HCl in the treatment of periimplant mucosal hyperplasia and mucositis. A controlled case series. Clin Oral Implants Res. 1997; 8: 427–433.
22. Zablotsky MH. Chemotherapeutics in implant dentistry. Implant Dentistry. 1993; 2: 19–25.
23. Kao RT, Curtis DA, Murray PA. Diagnosis and management of peri-implant disease. J Calif Dent Assoc. 1997; 25: 872–880.
24. Zablotsky MH, Diedrich DL, Meffert RM. Detoxification of endotoxin-contaminated titanium and hydroxyapatite-coated surfaces utilizing various chemotherapeutic and mechanical modalities. Implant Dentistry. 1992; 1: 154–158.D. L.
25. Lang NP, Wilson TG, Corbet EF. Biological complications with dental implants: their prevention, diagnosis and treatment. Clin Oral Implants Res 11 Suppl. 2000; 1: 146–155.
26. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants. 2002; 17: 202–211.
27. Haas R, Dortbudak O, Mensdorff-Pouilly N, et al. Elimination of bacteria on different implant surfaces through photosensitization and soft laser. An in vitro study. Clin Oral Implants Res. 1997; 8: 249–254.
28. Kreisler M, Al Haj H, Gotz H, et al. Effect of simulated CO(2) and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers Surg Med. 2002; 30: 233–239.
29. Kato T, Kusakari H, Hoshino E. Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med. 1998; 23: 299–309.
30. Jovanovic SA. The management of peri-implant breakdown around functioning osseointegrated dental implants. J Periodontol. 1993; 64: 1176–1183.
31. Kwan JY. The ailing implant. J Calif Dent Assoc. 1991; 19: 51–56.

Abstract Translations [German, Spanish, Portugese, Japanese]

AUTOR(EN): Jong-Jin Suh, D.D.S., M.S.D.*, Ziv Simon, D.M.D.**, Young-Sik Jeon, M.S.D., Ph.D.***, Byeong-Gap Choi, M.S.D., Ph.D.****, Chong-kwan Kim, M.S.D., Ph.D.*****. *klinischer stellvertretender Professor, Abteilung für Orthodontie, Yonsei Universität, zahnmedizinische Fakultät, Seoul, Korea. ** Assistenzarzt, Bereich Parodontologie, zahnmedizinische Fakultät, Universität Toronto, Toronto, Kanada. *** klinischer stellvertretender Professor, Abteilung für Prothetik, Yonsei Universität, zahnmedizinische Fakultät, Seoul, Korea. **** stellvertretender Professor, Abteilung für Prothetik, Yonsei Universität, zahnmedizinische Fakultät, Seoul, Korea. ***** Professor, Abteilung für Orthodontie, Yonsei Universität, zahnmedizinische Fakultät, Seoul, Korea. Schriftverkehr: Dr. Jong-jin Suh, Yonsei Universität, zahnmedizinische Fakultät, Abteilung für Orthodontie (Yonsei University, College of Dentistry, Department of Periodontics), Shinchondong, Sudaemoongu, Seoul, Korea. Telefon: (82)–2–3453–2520, Fax: (82)–2–3453–2343. eMail:[email protected]

Behandlung von Peri-Implantitis durch die Verwendung von Implantoplastiken und durch gezielte Knochengewebswiederherstellung: zwei Fallstudien

ZUSAMMENFASSUNG: Es liegen bereits vielfältige Vorschläge und Ansätze zur Behandlung von Peri-Implantitis vor. Diese Behandlungsansätze bauen zumeist auf empirischen Erfahrungswerten auf. Hierbei wird die Gabe eines Antibiotikums in Verbindung mit einem eventuellen chirurgischen Eingriff zur Disposition gestellt. Um zu gewährleisten, dass die betroffenen Implantatoberflächen dekontaminiert werden, setzt man zusätzlich chemisches oder mechanisches Débridement ein. Die über Implantoplastiken abgewickelte Desintoxikation von gewebsbasierenden Implantatoberflächen kann auch als Bestandteil einer Behandlung und daher nicht einziger Behandlungsansatz gute Ergebnisse erzielen. Die vorliegende Abhandlung befasst sich mit der Schilderung zweier Fälle, bei denen Implantate lokalisierte Läsionen aufgrund Peri-Implantitis ausbildeten und mittels Implantoplastikeinsatz, gefolgt von einer topischen Dekontamination durch Tetracyclin und gleichzeitiger gezielter Knochengewebswiederherstellung behandelt wurden. In beiden Fällen erwies sich der Behandlungsansatz als erfolgreich: die Beschwerden konnten abgestellt und das bereits verlorene Knochengewebe wieder aufgebaut werden. Diese sehr ermutigenden Ergebnisse sprechen für eine weiterführende Untersuchung der oben besprochenen Methodik.

SCHLÜSSELWÖRTER: Infektion des Implantats, Oberflächenveränderung, Implantatversagen, Mundbakterien

AUTOR(ES): Jong-Jin Suh, D.D.S., M.S.D.*, Ziv Simon, D.M.D.**, Young-Sik Jeon, M.S.D., Ph.D.***, Byeong-Gap Choi, M.S.D., Ph.D.****, Chong-kwan Kim, M.S.D., Ph.D.*****. *Profesor Clínico Asistente, Departamento de Periodóntica, Facultad de Odontología de Yonsei University, Seoul, Corea.**Residente, División de Periodontología, Facultad de Odontología, Universidad de Toronto, Toronto, Canadá. ***Profesor Clínico Asistente, Departamento de Periodóntica, Facultad de Odontología de Yonsei University, Seoul, Corea. ****Profesor Asistente, Departamento de Prostodóntica, Facultad de Odontología de Yonsei University, Seoul, Corea. *****Profesor, Departamento de Prostodóntica, Facultad de Odontología de Yonsei University, Seoul, Corea. Correspondencia a: Dr. Jong-jin Suh, Yonsei University, College of Dentistry, Department of Periodontics, Shinchondong, Sudaemoongu, Seoul, Corea. Teléfono (82) 2 3453-2520, Fax: (82) 2 3453 2343. Correo electrónico:[email protected]

El uso de implantoplastia y la regeneración guiada del hueso en el tratamiento de la perimplantitis–dos informes de caso

ABSTRACTO: Una variedad de modalidades de tratamiento se han propuesto para la atención de la perimplantitis. Los mismos se basan principalmente en la experiencia empírica y emplean la administración sistémica de un antibiótico junto con la intervención quirúrgica. Para asegurar la descontaminación de las superficies afectadas del implante, se emplea el desbridamiento químico y/o mecánico. Para la desintoxicación de las superficies texturizadas del implante, el uso de la implantoplastia también podrá brindar resultados favorables cuando se usan como parte del procedimiento. Se informaron dos casos en los que los implantes crearon lesiones perimplantitis localizadas. La implantoplastia seguida de la descontaminación con tetraciclina tópica se usó junto con la regeneración guiada del hueso. En ambos casos, los procedimientos tuvieron efecto en la eliminación de la enfermedad y la regeneración del hueso perdido. Dichos resultados sugieren que la técnica es prometedora y deberá investigarse con mayor profundidad.

PALABRAS CLAVES: infección en el implante, modificación de la superficie, falla del implante, bacteria oral

AUTOR(ES): Jong-Jin Suh, D.D.S., M.S.D.*, Ziv Simon, D.M.D.**, Young-Sik Jeon, M.S.D., Ph.D.***, Byeong-Gap Choi, M.S.D., Ph.D.****, Chong-kwan Kim, M.S.D., Ph.D.*****. *Professor Assistente de Clínica, Departamento de Periodontia, Faculdade de Odontologia da Universidade de Yonsei, Seul, Coréia. ** Residente, Divisão de Periodontia, Faculdade de Odontologia da Universidade de Toronto, Toronto, Canadá. *** Professor Assistente de Clínica, Departamento de Prostodontia, Faculdade de Odontologia da Universidade de Yonsei, Seul, Coréia. **** Professor Assistente, Departamento de Prostodontia, Faculdade de Odontologia da Universidade de Yonsei, Seul, Coréia. ***** Professor, Departamento de Periodontia, Faculdade de Odontologia da Universidade de Yonsei, Seul, Coréia.. Correspondência a: Dr. Jong-jin Suh, Yonsei University, College of Dentistry, Department of Periodontics. Shinchondong, Sudaemoongu, Seoul, Korea. Telefone: (82) -2-3453-2520, Fax: (82)-2-3453-2343. email:[email protected]

O Uso da Implantoplastia e Regeneração Óssea Guiada no Tratamento de Peri-implantite–Dois Relatórios de Caso

SUMÁRIO: Uma variedade de modalidade de tratamento tem sido propostas para o gerenciamento da peri-implantite. Estes são em sua maioria baseados em experiências empíricas e empregam a administração sistêmica de antibióticos em conjunto com intervenção cirúrgica. Parra assegurar a descontaminação da superfície(s) afetadas do implante, o desbridamento químico e/ou mecânico é utilizado. Para superfícies de implante texturizadas a desentoxicação usando implantoplastia pode também oferecer resultados favoráveis quando usada como parte do procedimento. Dois casos saão relatados nos quais os implantes desenvolveram lesões localizadas de peri-implantite. A implantoplastia seguida por uma descontaminação tópica com tetraciclina foi usada em conjunto com a regeneração guiada do osso. Em ambos os casos, os procedimentos foram efetivos em deter a doença e regenerar o osso perdido. Estes resultados sugerem que a técnica é positiva e deveria ser investigada mais profundamente.

PALAVRAS-CHAVE: infecção de implante, modificação da superfície, falha de implante, bactérias orais.

FIGURE

FIGURE
FIGURE
Keywords:

implant infection; surface modification; implant failure; oral bacteria

Copyright © 2003 Wolters Kluwer Health, Inc. All rights reserved.