P036 (0023) EARLY-STAGE HODGKIN LYMPHOMA (HL) IN THE MODERN ERA

HARNESSING SIMULATION MODELING TO DELINEATE LONG-TERM PATIENT OUTCOMES

doi: 10.1097/01.HS9.0000547887.12255.e7
Survivorship and Patients Perspective
Free

Susan K. Parsons1,2,3,4, Michael J. Kelly1,5, Joshua T. Cohen2,3,6, Sharon M. Castellino7, Tara O. Henderson8, Kara M. Kelly9, Frank G. Keller7, Tobi J. Henzer3, Anita J. Kumar2,3,4, Peter Johnson10, Ralph M. Meyer11, John Radford12, John Raemaekers13, David C. Hodgson14, Andrew M. Evens15

1Department of Pediatrics, Tufts University School of Medicine, Boston, MA, USA,2Department of Medicine, Tufts University School of Medicine, Boston, MA, USA,3Institute for Clinical Research and Health Policy Studies, Tufts MC, Boston, MA,4Division of Hematology/Oncology, Tufts MC, Boston, MA, USA,5Division of Pediatric Hematology/Oncology, The Floating Hospital for Children at Tufts Medical Center (MC), Boston, MA, USA,6Center for the Evaluation of Value and Risk in Health, Tufts MC, Boston, MA, USA,7Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA,8Department of Pediatrics, Section of Hematology, Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL,9Department of Pediatrics, Roswell Park Cancer Institute, University of Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY,10Cancer Research UK Centre, Southampton, United Kingdom,11Department of Oncology, Juravinski Hospital and Cancer Centre and McMaster University, Hamilton Ontario, Canada,12University of Manchester and the Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK,13Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands,14Radiation Medicine Programme, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada,15Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA

Introduction: Helping clinicians and patients (pts) assess alternative HL treatment options is challenging, especially with consideration of the incidence and impact of late effects (LEs) on outcomes. We constructed a novel simulation model analyzing and integrating multiple data sets to project long-term outcomes with contemporary early-stage HL (ESHL) therapy, namely combined modality therapy (CMT) vs. chemotherapy alone (CA) via PET response-adaption.

Methods: The model consists of a series of health states: 1) at risk for relapse; 2) relapse; 3) cured without relapse; 4) cured with relapse; 5) cured with late effects; and 6) dead. During each model cycle (a period of 1 year in the model), simulated subjects can transition from their current health state to other health states (Figure). Whether a subject transitions to another health state depends on the transition pathway probability connecting the current and destination states. The 6 health states in the model have utility weights ranging from zero (dead) to 0.80 (cured without relapse). The model incorporated 3-year progression-free survival (PFS) estimates (Radford et al NEJM 2015); probability of cure with/without relapse; 35-year probability of LEs; and frequency of severe LEs. We generated estimates for quality-adjusted life years (QALYs) and unadjusted survival (life years = LY) and used model projections to compare outcomes for CMT vs. CA for two index pts. Pt #1: a 25-year-old male with favorable ESHL (stage IA); pt #2: a 25-year-old female with unfavorable ESHL (stage IIB). Multiple sensitivity analyses assessed the impact of alternative assumptions for LE probabilities.

Results: For pt #1, CMT was superior to CA (CMT incremental gain = 0.11 QALYs, 0.21 LYs). For pt #2, CA was superior to CMT (CA incremental gain = 0.37 QALYs, 0.92 LYs). As the proportion of pts with LEs with severe outcomes was reduced from its base case value of 20% to 5% in sensitivity analysis, the relative advantage of CMT for pt #1 increased to 0.15 QALYS and 0.43 unadjusted, undiscounted LYs. Increasing the severity proportion for pt #2's LEs from 20% to 80% showed that these alternative assumptions increased the CA advantage vs.CMT to as much as 1.1 QALYs (13 months in perfect health) and 6.5 unadjusted, undiscounted LYs.

Conclusions: Collectively, this detailed and dynamic simulation model quantified the impact that alternative treatment options have on long-term survival for individual, varying pts with ESHL.

Figure

Figure

Copyright © 2018 The Authors. Published by Wolters Kluwer Health Inc., on behalf of the European Hematology Association.