Secondary Logo

Journal Logo

Quadratus lumborum block for postoperative pain after caesarean section

A randomised controlled trial

Blanco, Rafael; Ansari, Tarek; Girgis, Emad

European Journal of Anaesthesiology (EJA): November 2015 - Volume 32 - Issue 11 - p 812–818
doi: 10.1097/EJA.0000000000000299
Regional anaesthesia
Free

BACKGROUND Effective postoperative analgesia after caesarean section is important because it enables early ambulation and facilitates breast-feeding. Several case reports have shown that local anaesthetic injection around the quadratus lumborum muscle is effective in providing pain relief after various abdominal operations and in patients with chronic pain. The quadratus lumborum block (QLB) is performed in close proximity to the surface and uses a fascial compartment path to extend the distribution of local anaesthesia into the posterior abdominal wall and paravertebral space. This central effect can be of vital importance when managing the visceral pain after caesarean section.

OBJECTIVE We hypothesised that the QLB after caesarean section can provide adequate pain relief as part of a multimodal approach.

DESIGN Double-blind, randomised and controlled clinical trial.

SETTING A single centre between June 2014 and December 2014.

PATIENTS Fifty patients who were American Society of Anesthesiologists physical status 1 or 2, with normal singleton pregnancies with a gestation of at least 37 weeks, and scheduled for elective caesarean section under spinal anaesthesia, were enrolled into the study. They were randomly assigned to receive a QLB (n = 25) with 0.125% bupivacaine 0.2 ml kg−1 (Group 1) or a QLB (n = 25) with 0.9% Normal saline 0.2 ml kg−1 (Group 2).

MAIN OUTCOME MEASURES The primary outcome measure for the study was the morphine demands and doses delivered by a patient-controlled analgesia system at predetermined intervals (1, 2, 4, 6, 12, 24 and 48 h) after surgery. The secondary endpoints were visual analogue scale (VAS) for pain at rest and on movement (dynamic), heart rate, blood pressure, pruritus, itching, nausea, vomiting and sedation.

RESULTS The patients who received local anaesthetic used significantly less morphine than the control group (P < 0.001) at 6 and 12 h, but not at 24 and 48 hours after caesarean section. The local anaesthetic group had significantly less morphine demand than the control group (P < 0.001) 6, 12, 24 and 48 h after caesarean section. The VAS was significantly lower in the local anaesthetic group than the control group, including VAS for pain at rest at all times except 24 h after caesarean section, and VAS for pain on movement (dynamic) at all times.

CONCLUSION The QLB after caesarean section was effective and provided satisfactory analgesia in combination with a typical postoperative analgesic regimen.

TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02328378.

From the Anaesthetic Department, Corniche Hospital, Abu Dhabi, United Arab Emirates (RB, TA, EG)

Correspondence to Dr Rafael Blanco, Consultant Anaesthetist, Corniche Hospital, P.O. Box 3788, Abu Dhabi, United Arab Emirates Tel: +971 2 672 4900; fax: +971 2 672 0782; e-mail: rafablanco@mac.com

Published online 29 July 2015

Back to Top | Article Outline

Introduction

Ultrasonography-guided quadratus lumborum block (QLB) was reported in 2007, when we described the infiltration of local anaesthetic solution adjacent to the anterolateral aspect of the quadratus lumborum muscle.1 Using contrast dye, the spread of the local anaesthetic after QLB showed extension into the thoracic paravertebral space. This was similar to the spread after the original transversus abdominis plane (TAP) block using the Petit triangle.2 In contrast, anterior spread of the anaesthetic solution into the TAP plane was observed after mid-axillary and anterior subcostal ultrasonography-guided approaches. This pattern of spread of the anaesthetic solution did not change with doubling of the local anaesthetic volume from 0.3 to 0.6 ml kg−1 body weight.3 The extension of local anaesthetic agent beyond the TAP plane to the thoracic paravertebral space after QLB may be responsible for the extent of analgesia and prolonged duration of pain relief after QLB in comparison with the more anterior approach.

In a recent double-blind clinical trial, Telnes et al.4 compared TAP block with wound infiltration with local anaesthetic. In that study, TAP blocks did not reduce cumulative morphine consumption following caesarean section and were associated with more pronounced sedation. This leads to the suggestion that blocking somatic fibres alone is insufficient, and a block including the visceral fibres may be more likely to provide adequate analgesia.5

Intrathecal morphine is widely used worldwide for caesarean section. Our hypothesis is that the QLB may become an alternative technique in reducing postoperative pain and morphine requirements when intrathecal morphine is not used for these procedures.

QLB aims to infiltrate local anaesthetic into a fascial plane that can reach the paravertebral space by dissecting the space behind the quadratus lumborum muscle. Initially, the point of injection was at the anterolateral border of the quadratus lumborum muscle, at the junction with the transversalis fascia, in an approach termed QLB1. We performed further studies with contrast-enhanced MRI (unpublished data) using two different points of injection, the original one at the anterolateral side of the muscle and a second one, termed QLB2, at the posterior aspect of the muscle (Fig. 1). We examined the spread of contrast within the fascial plane. The MRI images showed that moving the point of injection to the posterior border of the quadratus lumborum muscle, between the quadratus lumborum and the latissimus dorsi muscles, may provide a more predictable spread of local anaesthetic into the paravertebral space (Fig. 2). This method had the advantage of a more superficial point of injection with better ultrasonographic resolution. It was also potentially safer because the needle tip was separated from the peritoneum by the quadratus lumborum muscle, reducing the risk of intraperitoneal injection and bowel injury. Although we previously labelled these two approaches QLB1 and QLB2,6 we currently use the term QLB for the posterior approach as we have abandoned the anterolateral one.

Fig. 1

Fig. 1

Fig. 2

Fig. 2

Several case reports have shown that local anaesthetic injection around the quadratus lumborum is effective in providing pain relief after various abdominal operations and in patients with chronic pain.7–10 However, a literature search identified no randomised controlled trials that evaluated the effect of QLB after caesarean section. The purpose of this randomised, controlled, double-blinded study was to evaluate the analgesic efficacy of QLB after caesarean section.

Back to Top | Article Outline

Methods

Ethical approval for this study was provided by the Research Ethics Committee at Corniche Hospital, Abu Dhabi, United Arab Emirates (Chairperson Dr P. Bosio) on 20 March 2014, reference number CH27021403. The study was registered with a clinical trials registry (ClinicalTrials.gov identifier: NCT02328378).

After obtaining informed consent, 50 parturients who were scheduled for elective caesarean section under spinal anaesthesia were enrolled into the study. Inclusion criteria were American Society of Anesthesiologists physical status 1 or 2 and a normal singleton pregnancy with a gestation of at least 37 weeks. We excluded patients who had congenital coagulopathy, anatomical abnormalities, localised infection, who used anticoagulants or were unable to comprehend or use the verbal rating pain scoring system or patient-controlled analgesia (PCA) pump.

Patients were allocated randomly into one of two groups with an internet-based randomisation program (Urbaniak GC, Plous S. Research Randomizer version 4.0). The QLB group received a QLB at the end of surgery with 0.125% bupivacaine 0.2 ml kg−1 (n = 25) and the control group received a QLB with 0.9% normal saline 0.2 ml kg−1 (n = 25). A sealed opaque envelope containing the study number was opened by an anaesthetist who was not involved in the study. This anaesthetist prepared the study medication and labelled the syringe with a unique study number; this number was used to identify the study medication and was revealed only on completion of data collection at the end of the study. The anaesthetists who were involved in the study, parturients and other healthcare providers who were involved in postoperative care were blinded to the patient group assignment.

Back to Top | Article Outline

Study protocol

Perioperative anaesthesia management was according to departmental guidelines. The patients received oral ranitidine 150 mg on the evening before and again on the morning of surgery. In the operating room, all patients received oral 0.3 M sodium citrate 30 ml. A 16-gauge intravenous cannula was inserted in the nondominant hand or arm after 2% lidocaine had been infiltrated at the cannulation site. In all patients, spinal anaesthesia was performed with ultrasonograph guidance. With the patient in the sitting position the midline and level of the L3–4 and L4–5 intervertebral spaces were identified with ultrasonography (transverse and longitudinal approaches). At the level selected by the anaesthetist, the distance from the skin to the dura mater and the angle of the probe used to achieve the optimal view of the dura mater were noted. The predetermined point of entry for the introducer needle was marked on the patient's back using a skin marker. With the patient still in the sitting position, spinal anaesthesia was administered with a 26-gauge pencil point needle (Portex, Smiths Medical, Ashford, UK) using hyperbaric bupivacaine 15 mg and fentanyl 20 μg. Patients were immediately placed in the supine position with left uterine displacement. Spinal anaesthesia was considered successful when a bilateral block to T6, assessed by loss of cold (ice cube) and touch (blunt pin) discrimination, was established 5 min after the spinal injection.

Anaesthetic and surgical treatment was performed in the usual manner. At the end of surgery, all patients received rectal diclofenac 100 mg and intravenous paracetamol 1 g. While in the supine position, patients received bilateral QLBs performed by one of the authors (R.B.) who had more than 8 years’ experience of using this technique. All patients were monitored throughout the performance of the block. A broadband (5–8 MHz) convex probe (Sonosite EDGE Portable Ultrasound System, SonoSite, Bothell, Washington, USA) was used, and imaging depth was set between 1 and 9 cm. After cleaning the abdomen with surgical solution (iodine povacrylex and isopropyl alcohol solution 26 ml; 3 M DuraPrep, 3 M, St. Paul, Minnesota, USA), the probe was placed at the level of the anterosuperior iliac spine and moved cranially until the three abdominal wall muscles were clearly identified. The external oblique muscle was followed posterolaterally until its posterior border was visualised (hook sign) leaving underneath the internal oblique muscle, like a roof over the quadratus lumborum muscle. The probe was tilted down to identify a bright hyperechoic line that corresponded with the intermediate layer of the thoracolumbar fascia. The needle (Sonoplex Pajunk, 21 gauge × 100 mm, Pajunk, Norcross, Georgia, USA) was inserted in plane from medial (anterior) to lateral (posterior). The optimal point of injection was determined using hydrodissection. The spread of local anaesthetic was posteromedial rather than anterolateral (Fig. 3).

Fig. 3

Fig. 3

After the patient was brought to the recovery room, a morphine PCA pump (Graseby 3300 Pump, Smith Medical International, Ashford, Kent, UK) was connected to the patient. The pump was programmed to deliver a 1-mg intravenous bolus on demand, with a lockout interval of 5 min and no background infusion.

The primary outcome measure of the study was the total number of PCA morphine demands and the actual doses delivered at predetermined time intervals (1, 2, 4, 6, 12, 24 and 48 h) after surgery. The following variables were measured and documented: heart rate, respiratory rate, oxygen saturation and noninvasive blood pressure. Pain was assessed with a visual analogue score (VAS) at rest (VASR) and with movement (dynamic) (0, no pain; 10, worst pain imaginable). Supplemental and regular analgesics, residual nerve block, sedation scores (Ramsay scale), itching (0, none; 1, mild; 2, moderate; 3, severe), nausea (0–3 scale: 0, none; 1, mild; 2, moderate; 3, severe or vomiting) and other complications were documented.

All patients received regular oral paracetamol 1 g 6 hourly, and diclofenac 50 mg at 8-hourly intervals. Intravenous ondansetron 4 mg was used to treat nausea and vomiting. Patients with a score of 10 in the modified Aldrete scoring system were considered eligible for discharge to the surgical ward. Data collection was continued on the ward for 48 h.

Back to Top | Article Outline

Statistical analysis

A sample size calculation (PS: Power and Sample Size Calculation, version 3.1.2, Vanderbilt University, Nashville, Tennessee, USA) showed that 25 patients were required in each group, based on 15% difference in morphine consumption between the two groups. Probability (power) was set at 0.8 and type I error associated with this test for null hypothesis was 0.01. All data analyses were performed according to a preestablished statistical plan. Correction of P for multiple testing was set to 0.01 to detect significance (Bonferroni adjustment for multiple comparisons). Data were collected and entered into the computer as numerical or categorical data (IBM SPSS Statistics for Windows, Version 20.0, IBM Corp., Armonk, New York, USA). Complete descriptive statistics were recorded for each variable including minimum, maximum, range, mean, standard deviation, 95% confidence interval of the mean, median and interquartile range. Comparisons were performed between the two groups using independent t tests or Mann–Whitney tests, as appropriate. Analysis of variance was performed within groups for normally distributed variables. The Friedman test was used for repeated measures for nonnormally distributed variables. Box plots, whisker plots and error-bar graphs were plotted. The χ2 test and Fisher exact test were used to evaluate the association between qualitative variables.

Back to Top | Article Outline

Results

A total of 50 patients were recruited to the study (Fig. 4). Two were excluded because they delivered their baby on the night before the planned caesarean section. Of the remaining 48 patients, 25 had been allocated to the QLB group and 23 to the control group. There were no deviations from protocol. Patient demographics for the both the groups were comparable. There were no significant differences between the groups in operative time, blood loss, or time to perform the block. Oxygen saturation, heart rate, respiratory rate and blood pressure were similar in both the groups. There were no statistically significant differences in sedation, itching or nausea scores (Table 1).

Fig. 4

Fig. 4

Table 1

Table 1

Patients in the QLB group used significantly less morphine than the control group (P < 0.001) at 6 and 12 h but not at 24 and 48 hours after caesarean section. The QLB group had significantly fewer morphine demands than the control group (P < 0.001) at 6, 12, 24 and 48 h after caesarean section (Table 2).

Table 2

Table 2

The VAS was significantly lower in the QLB group than in the control group: VAS at rest at all times except 24 h after caesarean section; VAS with movement (dynamic) at all times (Table 3).

Table 3

Table 3

Back to Top | Article Outline

Discussion

To the best of our knowledge, this is the first double-blind, randomised, prospective study of QLB for caesarean section. We studied the effects of QLB versus placebo on PCA morphine doses and demands. We found that the patients who received QLB had significantly less morphine consumption than the control group 6 and 12 h after the operation. They also had significantly fewer morphine demands at all time points after caesarean section. The VAS scores were significantly better at every observation time in the QLB group than in control patients.

QLB is a superficial fascial block between the posterior abdominal wall muscles and is not technically difficult to perform. We base this observation on our experience in the training and competency assessment of anaesthetists at our institution who perform this block. Every anaesthetist is evaluated by the main operator and designer of the technique (R.B.), and learning curves are currently being investigated.

QLB may be safer than TAP block because it is performed in close proximity to the surface and uses a fascial compartment path to extend the distribution of local anaesthetic into the posterior abdominal wall and paravertebral space. This requires a broader knowledge of ultrasonographic anatomy beyond the TAP plane. The anterior and posterior abdominal wall muscles must be identified.

Several studies have examined the role of TAP block as part of a multimodal approach in postoperative analgesia after caesarean section, with variable results.11,12 This block has also been used for other abdominal operations in which the supraumbilical areas must be covered. The contribution of TAP block to the treatment of visceral pain is nonexistent because it comprises infiltration only into the anterior abdominal wall. Baaj et al.13 found an advantage in reducing morphine consumption when using TAP blocks after caesarean section but other clinical trials have suggested no benefit. TAP block after caesarean section may be less effective and more costly than intrathecal morphine, with no evidence of either improvement in analgesia, or decreased supplemental morphine requirements or lower pain scores.14–17 A meta-analysis confirmed that there was better analgesia with intrathecal morphine than TAP block alone, but morphine was associated with a higher incidence of adverse events.18 In a systematic review and meta-analysis by Abdallah et al.,19 it was concluded that TAP block constitutes an effective analgesic option for postoperative analgesia after caesarean section. This applies when spinal morphine is not used, but if intrathecal morphine is administered then there is no evidence that TAP block is of benefit. In another meta-analysis a year later, the same lead author concluded that more prolonged analgesia was produced with a posterior rather than a lateral TAP block during the first 48 h after lower abdominal surgery through a transverse incision.20

Pruritus is the most common side-effect after the use of intrathecal morphine and has a variable incidence that can be up to 87% of patients. Urinary retention is another major factor (up to 70%) in these patients, with a mean interval until the first urination of 693 min. Nausea and vomiting can also be important and the possibility of ventilatory depression cannot be excluded in patients receiving intrathecal morphine. We used 20 μg of fentanyl intrathecally instead of morphine to try to minimise the side-effects of longer acting opioids.21

We performed QLB after the end of surgery with the patient supine and still under the effects of spinal anaesthesia. We opted against performing the block before surgery because the ultrasonographic anatomy may be less clear with the gravid uterus. In our experience, the optimal point of needle insertion is posterior to the quadratus lumborum because this approach is safer and quicker to perform. Our previous MRI studies showed consistent dispersion of the local anaesthetic into the posterior abdominal wall and paravertebral space. While performing the block, it is common to visualise the lower pole of the kidneys and lower lobes of the liver and spleen. In this situation, the probe should be moved more posterior and inferior.

Back to Top | Article Outline

Limitations

The possible effect of local anaesthetic dispersion through the paravertebral space must be investigated further. From the MRI images obtained, it appeared that a small volume of contrast was reaching the paravertebral space, but this may be because of the parameters used for the three-dimensional reconstructions. We know from our clinical experience that when QLB is performed as a rescue block after abdominal surgery, the block can produce relief of dull visceral pain within several minutes. This could be explained by a hypothetical role of the sympathetic nervous system in acute pain; autonomic C fibres are much smaller and may be blocked faster than myelinated fibres.

In our study, we showed that QLB produced prolonged postoperative analgesia, up to 48 h. Therefore, the use of catheters for additional boluses or for infusions of analgesics, is not likely to be beneficial in QLB for caesarean section.

In the present study, we did not assess the postoperative dermatomal levels of block as part of our measurements. We had concerns that the finding of a prolonged area of numbness would have unblinded both the anaesthetists who collected data and nurses who cared for these patients. Another possible limitation was that the patients may have been using morphine PCA to treat nonoperative pain; we educated our patients before the study not to use morphine for these purposes.

In a busy unit such as our hospital, with more than 8000 deliveries per year, the introduction of an additional procedure at the end of surgery has the potential to slow turnover time between cases. However, we have shown that in experienced hands the average time to perform QLB is less than 2 min. The advantages of introducing QLB as part of routine perioperative care for caesarean section may offset the drawback of adding a few minutes to the anaesthetic time.

Back to Top | Article Outline

Conclusion

In summary, the present results showed that QLB has an important contributory role in the treatment of postoperative pain after caesarean section. The optimal point of injection was posterior to the quadratus lumborum muscle. This was a more superficial approach than our previous version of the block at the anterolateral side of the muscle. Safety of the block is improved, and complications may be avoided, because of better image resolution, longer distance to the intra-abdominal viscera and the presence of adjacent muscles. Proper implementation of the technique can significantly decrease opioid use after caesarean sections.

Back to Top | Article Outline

Acknowledgements relating to this article

Assistance with the study: none.

Financial support and sponsorship: none.

Conflicts of interest: none.

Presentation: none.

Back to Top | Article Outline

References

1. Blanco R. Tap block under ultrasound guidance: the description of a ‘no pops’ technique: 271 [abstract]. Region Anesth Pain Med 2007; 32:S1–130.
2. McDonnell JG, O’Donnell B, Curley G, et al. The analgesic efficacy of transversus abdominis plane block after abdominal surgery: a prospective randomized controlled trial. Anesth Analg 2007; 104:193–197.
3. Carney J, Finnerty O, Rauf J, et al. Studies on the spread of local anaesthetic solution in transversus abdominis plane blocks. Anaesthesia 2011; 66:1023–1030.
4. Telnes A, Skogvoll E, Lonnee H. Transversus abdominis plane block vs. wound infiltration in Caesarean section: a randomised controlled trial. Acta Anaesthesiol Scand 2015; 59:496–504.
5. Bantel C, Trapp S. The role of the autonomic nervous system in acute surgical pain processing – what do we know? Anaesthesia 2011; 66:541–544.
6. Blanco R, McDonnell JG. Optimal point of injection: the quadratus lumborum type I and II blocks. http://www.respond2articles.com/ANA/forums/post/1550.aspx. [Accessed 10 January 2014]
7. Kadam VR. Ultrasound-guided quadratus lumborum block as a postoperative analgesic technique for laparotomy. J Anaesthesiol Clin Pharmacol 2013; 29:550–552.
8. Carvalho R, Segura E, Loureiro MD, Assunção JP. Quadratus lumborum block in chronic pain after abdominal hernia repair: case report. Rev Bras Anestesiol 2014; Dec 5. doi: 10.1016/j.bjan.2014.08.001.
9. Visoiu M, Yakovleva N. Continuous postoperative analgesia via quadratus lumborum block – an alternative to transversus abdominis plane block. Paediatr Anaesth 2013; 23:959–961.
10. Chakraborty A, Goswami J, Patro V. Ultrasound-guided continuous quadratus lumborum block for postoperative analgesia in a pediatric patient. A A Case Rep 2015; 4:34–36.
11. McDonnell JG, Curley G, Carney J, et al. The analgesic efficacy of transversus abdominis plane block after cesarean delivery: a randomized controlled trial. Anesth Analg 2008; 106:186–191.
12. Costello JF, Moore AR, Wieczorek PM, et al. The transversus abdominis plane block, when used as part of a multimodal regimen inclusive of intrathecal morphine, does not improve analgesia after cesarean delivery. Region Anesth Pain Med 2009; 34:586–589.
13. Baaj J, Alsatli RA, Majaj HA, et al. Efficacy of ultrasound-guided transversus abdominis plane (TAP) block for postcesarean section delivery analgesia – a double-blind, placebo-controlled, randomized study. Middle East J Anaesthesiol 2010; 20:821–826.
14. Belavy D, Cowlishaw PJ, Howes M, Phillips F. Ultrasound-guided transversus abdominis plane block for analgesia after Caesarean delivery. Br J Anaesth 2009; 103:726–730.
15. Kanazi GE, Aouad MT, Abdallah FW, et al. The analgesic efficacy of subarachnoid morphine in comparison with ultrasound-guided transversus abdominis plane block after cesarean delivery: a randomized controlled trial. Anesth Analg 2010; 111:475–481.
16. Mc Morrow RC, Ni Mhuircheartaigh RJ, Ahmed KA, et al. Comparison of transversus abdominis plane block vs spinal morphine for pain relief after Caesarean section. Br J Anaesth 2011; 106:706–712.
17. Loane H, Preston R, Douglas MJ, et al. A randomized controlled trial comparing intrathecal morphine with transversus abdominis plane block for postcesarean delivery analgesia. Int J Obstet Anesth 2012; 21:112–118.
18. Mishriky BM, George RB, Habib AS. Transversus abdominis plane block for analgesia after Cesarean delivery: a systematic review and meta-analysis. Can J Anaesth 2012; 59:766–778.
19. Abdallah FW, Halpern SH, Margarido CB. Transversus abdominis plane block for postoperative analgesia after Caesarean delivery performed under spinal anaesthesia? A systematic review and meta-analysis. Br J Anaesth 2012; 109:679–687.
20. Abdallah FW, Laffey JG, Halpern SH, Brull R. Duration of analgesic effectiveness after the posterior and lateral transversus abdominis plane block techniques for transverse lower abdominal incisions: a meta-analysis. Br J Anaesth 2013; 111:721–735.
21. Gehling M, Tryba M. Risks and side-effects of intrathecal morphine combined with spinal anaesthesia: a meta-analysis. Anaesthesia 2009; 64:643–651.
© 2015 European Society of Anaesthesiology