Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Impact of Disease on Amikacin Pharmacokinetics and Dosing in Children

Liu, Xiaoxi PhD*; Smits, Anne MD; Wang, Yuhuan PhD*; Renard, Marleen MD; Wead, Stephanie PharmD§; Kagan, Richard J. MD; Healy, Daniel P. PharmD§; De Cock, Pieter PhD, PharmD║,**; Allegaert, Karel MD, PhD††,‡‡,§§; Sherwin, Catherine M.T. PhD*

doi: 10.1097/FTD.0000000000000568
Original Article

Background: Amikacin is widely used to treat severe Gram-negative bacterial infections. Its peak concentration in plasma is associated with treatment efficacy. Amikacin pharmacokinetics (PK) is influenced by disease conditions, in addition to other patient characteristics. In this retrospective study, we evaluated the impact of clinical characteristics and disease condition on amikacin PK in children with burn injuries and those with cancer.

Methods: Amikacin PK data from 66 children with burn injuries and 112 children with cancer were analyzed. A population PK model was developed using the nonlinear mixed-effects modeling approach. Models were developed using NONMEM 7.3 (ICON Development Solutions, LLC, Ellicott City, MD). Data processing and visualization was performed using R packages.

Results: The amikacin PK data were best described by a 2-compartment model. The parameters were estimated with mean values (95% confidence intervals) as follows: central volume of distribution (V1), 5.70 L (4.64–6.76 L); central clearance, 2.12 L/h (1.79–2.46 L/h); peripheral volume of distribution (V2), 4.79 L (2.36–7.22 L); and distribution clearance (Q), 0.71 L/h (0.25–1.16 L/h). The final model identified the disease condition as a significant covariate and indicated 55% (28%–82%) higher central clearance and 17% (1%–34%) higher V1 in burn patients compared with cancer patients. Volume of distribution was significantly influenced by age and body weight. Clearance was significantly influenced by age, body weight, and creatinine clearance. Using the final PK model, we developed a workflow for selecting optimal dosing strategies for 3 representative pediatric patient profiles.

Conclusions: Disease condition was significant in influencing amikacin PK in children. To reach the same target concentrations (64 mg/L peak concentration) with a daily-dose plan, burn patients need higher doses than cancer patients. Future investigations are needed to explore the impact of other diseases on amikacin disposition in children, and to prospectively validate the proposed dosing strategy.

*Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah;

Neonatal Intensive Care Unit, University Hospitals Leuven;

Department of Pediatric Oncology, University Hospitals Leuven, Leuven, Belgium;

§James L. Winkle College of Pharmacy, University of Cincinnati;

The Shriners Hospitals for Children, Cincinnati, Ohio;

Department of Pharmacy, Ghent University Hospital;

**Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium;

††Department of Development and Regeneration, KU Leuven, Leuven, Belgium;

‡‡Intensive Care, Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital; and

§§Department of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.

Correspondence: Xiaoxi Liu, PhD, Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way 1S135, Salt Lake City, UT 84108 (e-mail:

The authors declare no conflict of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (

Received May 21, 2018

Accepted August 23, 2018

Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.