Secondary Logo

Institutional members access full text with Ovid®

Reliable and Easy-To-Use Liquid Chromatography–Tandem Mass Spectrometry Method for Simultaneous Analysis of Fluconazole, Isavuconazole, Itraconazole, Hydroxy-Itraconazole, Posaconazole, and Voriconazole in Human Plasma and Serum

Müller, Carsten, MD*; Gehlen, David, MS; Blaich, Cornelia, MD*; Prozeller, Domenik, MS; Liss, Blasius, MD; Streichert, Thomas, MD§; Wiesen, Martin H., J., MD*

doi: 10.1097/FTD.0000000000000438
Original Article
Buy
SDC

Background: A fast and easy-to-use liquid chromatography-tandem mass spectrometry method for the determination and quantification of 6 triazoles [fluconazole (FLZ), isavuconazole (ISZ), itraconazole (ITZ), hydroxy-itraconazole (OH-ITZ), posaconazole (PSZ), and voriconazole (VRZ)] in human plasma and serum was developed and validated for therapeutic drug monitoring.

Methods: Sample preparation was based on protein precipitation with acetonitrile and subsequent centrifugation. Isotope-labeled analogues for each analyte were used as internal standards. Chromatographic separation was achieved using a 50 × 2.1 mm, 1.9 μm polar Hypersil Gold C18 column and mobile phase consisting of 0.1% formic acid/acetonitrile (45%/55%, vol/vol) at a flow rate of 340 μL/min. The triazoles were simultaneously detected using a triple-stage quadrupole mass spectrometer operated in selected reaction monitoring mode with positive heated electrospray ionization within a single runtime of t = 3.00 minutes.

Results: Linearity of all azole concentration ranges was verified by the Mandel test and demonstrated for all azoles. All calibration curves were linear and fitted using least squares regression with a weighting factor of the reciprocal concentration. Limits of detection (μg/L/L) were FLZ, 9.3; ISZ, 0.3; ITZ, 0.6; OH-ITZ, 8.6; PSZ, 3.4; and VRZ, 2.1. The lower limits of quantitation (μg/L/liter) were FLZ, 28.3; ISZ, 1.0; ITZ, 1.7; OH-ITZ, 26.2; PSZ, 10.3; and VRZ, 6.3. Intraday and interday precisions ranged from 0.6% to 6.6% for all azoles. Intraday and interday accuracies (%bias) of all analytes were within 10.5%. In addition, we report on a 29-year-old white woman (94 kg body weight) with a history of acute myeloid leukemia who underwent stem cell transplantation. Because of diagnosis of aspergillus pneumonia, antifungal pharmacotherapy was initiated with different application modes and dosages of ISZ, and plasma concentrations were monitored over a time period of 6 months.

Conclusions: A precise and highly sensitive liquid chromatography-tandem mass spectrometry method was developed that enables quantification of triazoles in plasma and serum matrix across therapeutically relevant concentration ranges. It was successfully implemented in our therapeutic drug monitoring routine service and is suitable for routine monitoring of antifungal therapy and in severely ill patients.

*Center of Pharmacology, Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne;

Department of Chemistry, University of Cologne, Cologne;

Department of Internal Medicine, University Hospital of Cologne, Cologne; and

§Institute for Clinical Chemistry, University Hospital of Cologne, Cologne, Germany.

Correspondence: Carsten Müller, MD, Center of Pharmacology, Therapeutic Drug Monitoring, University Hospital of Cologne, Gleueler St 24, 50931 Cologne, Germany (e-mail: c.mueller@uni-koeln.de).

The authors declare no conflict of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (www.drug-monitoring.com).

Received April 12, 2017

Accepted July 12, 2017

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.