Secondary Logo

Journal Logo

Institutional members access full text with Ovid®


DuBose, Thomas D. Jr; Gitomer, Jeremy; Codina, Juan

Current Opinion in Nephrology and Hypertension: September 1999 - Volume 8 - Issue 5 - p 597-602
Review Article

The H+,K+-ATPases comprise a group of integral membrane proteins that belong to the X+,K+-ATPase subfamily of P-type cation-transporting ATPases. Although these H+,K+-ATPase isoforms share approximately 60-70% amino acid identity, they exhibit discrete kinetic and pharmacological properties when expressed in heterologous systems. HKα2 has been categorized by its insensitivity to Sch-28080, an inhibitor of the gastric H+,K+-ATPase, and partial sensitivity to ouabain, an inhibitor of the Na+,K+-ATPase. This functional profile contrasts with the pharmacological sensitivities ascribed to HKα2 in transport studies in rat isolated medullary collecting ducts perfused in vitro and in mouse medullary collecting duct cell lines. HKα2 mRNA and protein abundance appears to be both tissue and site-specifically upregulated in response to chronic hypokalemia. This regulatory response has been localized to the outer and inner medulla. To reconcile these expressed sensitivities to those reported in vitro in isolated tubules and cells in culture, it would be necessary to invoke modification of the pharmacologic insensitivity of the colonic H+,K+-ATPase to Sch-28080. Although a ‘unique’ β-subunit has been reported recently, this β-subunit (βc) is identical at the amino acid level to the recently cloned β3-Na+,K+-ATPase. Moreover, while HKα2 can assemble indiscriminately with any X+,K+-ATPase β-subunit, HKα2 has been reported to assemble stably with β1-Na+,K+-ATPase in the renal medulla and in the distal colon. It remains conceivable that subunit assembly could be tissue specific and might respond to different physiological and pathophysiological stimuli. Futhermore, recent studies have suggested that the H+,K+-ATPase is both Na+-dependent and localized to the apical membrane in the distal colon. Therefore, future studies will need to resolve these discrepancies by determining if a unique, yet undiscovered H+,K+-ATPase isoform exists in kidney, or if post-translational modifications of the α- and/or β-subunits could account for these functional diversities.

Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas, USA

Correspondence to Thomas D. DuBose Jr, Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas-Houston Medical School, 6431 Fannin, MSB 4.138, Houston, Texas 77030, USA. Tel: +1 713 500 6873; fax: +1 713 500 6882; e-mail:

© 1999 Lippincott Williams & Wilkins, Inc.