Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Recent insights into vascular development from studies in zebrafish

Matsuoka, Ryota, L.; Stainier, Didier, Y.R.

Current Opinion in Hematology: May 2018 - Volume 25 - Issue 3 - p 204–211
doi: 10.1097/MOH.0000000000000420
VASCULAR BIOLOGY: Edited by Edward F. Plow

Purpose of review Zebrafish has provided a powerful platform to study vascular biology over the past 25 years, owing to their distinct advantages for imaging and genetic manipulation. In this review, we summarize recent progress in vascular biology with particular emphasis on vascular development in zebrafish.

Recent findings The advent of transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome-editing technologies has dramatically facilitated reverse genetic approaches in zebrafish, as in other models. Here, we highlight recent studies on vascular development in zebrafish which mainly employed forward or reverse genetics combined with high-resolution imaging. These studies have advanced our understanding of diverse areas in vascular biology, including transcriptional regulation of endothelial cell differentiation, endothelial cell signaling during angiogenesis and lymphangiogenesis, vascular bed-specific developmental mechanisms, and perivascular cell recruitment.

Summary The unique attributes of the zebrafish model have allowed critical cellular and molecular insights into fundamental mechanisms of vascular development. Knowledge acquired through recent zebrafish work further advances our understanding of basic mechanisms underlying vascular morphogenesis, maintenance, and homeostasis. Ultimately, insights provided by the zebrafish model will help to understand the genetic, cellular, and molecular underpinnings of human vascular malformations and diseases.

Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

Correspondence to Ryota L. Matsuoka, Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany. Tel: +49 6032 705 1302; e-mail:

Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.