Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Cardiac arrest

prediction models in the early phase of hospitalization

Dumas, Florencea,b; Bougouin, Wulfranb,c; Cariou, Alainb,d

Current Opinion in Critical Care: June 2019 - Volume 25 - Issue 3 - p 204–210
doi: 10.1097/MCC.0000000000000613

Purpose of review There is a need for an early assessment of outcome in patients with return of spontaneous circulation after cardiac arrest. During the last decade, several models were developed in order to identify predictive factors that may facilitate prognostication and stratification of outcome.

Recent findings In addition to prognostication tools that are used in intensive care, at least five scores were recently developed using large datasets, based on simple and immediately available parameters, such as circumstances of arrest and early in-hospital indicators. Regarding neurological outcome, predictive performance of these models is good and even excellent for some of them. These scores perform very well for identifying patients at high-risk of unfavorable outcome. The most important limitation of these scores remains the lack of replication in different communities. In addition, these scores were not developed for individual decision- making, but they could instead be useful for the description and comparison of different cohorts, and also to design trials targeting specific categories of patients regarding outcome. Finally, the recent development of big data allows extension of research in epidemiology of cardiac arrest, including the identification of new prognostic factors and the improvement of prediction according to the profile of populations.

Summary In addition to the development of artificial intelligence, the prediction approach based on adequate scores will further increase the knowledge in prognostication after cardiac arrest. This strategy may help to develop treatment strategies according to the predicted severity of the outcome.

aEmergency Department, Cochin University Hospital (APHP) and Paris Descartes University

bSudden Death Expertise Center, INSERM U970 (Team 4), PARCC, Paris

cRamsay Générale de Santé, Hôpital Privé Jacques Cartier

dMedical Intensive Care Unit, Cochin University Hospital (APHP) and Paris Descartes University, Paris, France

Correspondence to Florence Dumas, Emergency Department, Cochin University Hospital (APHP) and Paris Descartes University, 27 rue du Faubourg Saint Jacques, 75014 Paris, France. E-mail:

Copyright © 2019 YEAR Wolters Kluwer Health, Inc. All rights reserved.