Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Oxidative metabolism in cancer growth

Ristow, Michael

Current Opinion in Clinical Nutrition and Metabolic Care: July 2006 - Volume 9 - Issue 4 - p 339–345
doi: 10.1097/01.mco.0000232892.43921.98
Genes and nutrition

Purpose of review Recent evidence suggests that oxidative metabolism may have a key role in controlling cancer growth. This review will provide an overview of the evidence accumulated so far. More than 80 years ago, Otto Warburg suggested that impaired oxidative metabolism may cause malignant growth. This assumption, later known as Warburg's hypothesis, has been experimentally addressed for many decades. It employs multiple approaches including cell lines, implanted xenografts and other animal models, by biochemical methods to quantify glycolytic and mitochondrial fluxes and signaling pathways including the rates of intermediate metabolism, respiration and oxidative phosphorylation.

Recent findings The hallmarks of cancer growth, increased glycolysis and lactate production in tumors, have raised attention recently due to novel observations suggesting a wide spectrum of oxidative phosphorylation deficits and decreased availability of ATP associated with malignancies and tumor cell expansion. The most recent findings suggest that forcing cancer cells into mitochondrial metabolism efficiently suppresses cancer growth, and that impaired mitochondrial respiration may even have a role in metastatic processes.

Summary This review summarizes published evidence on the essential interaction of tumor growth and mitochondrial metabolism, implicating novel approaches for the prevention and treatment of malignant disease.

Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany

Correspondence to Michael Ristow, Department of Human Nutrition, Institute of Nutrition, University of Jena, 29 Dornburger Street, D-07743 Jena, Germany Tel: +49 3641 949630; fax: +49 3641 949632; e-mail:

© 2006 Lippincott Williams & Wilkins, Inc.