Secondary Logo

Journal Logo

Institutional members access full text with Ovid®

Tibiofemoral Contact Mechanics With Horizontal Cleavage Tears and Treatment of the Lateral Meniscus in the Human Knee

An In Vitro Cadaver Study

Koh, Jason L., MD; Zimmerman, Todd A., MA; Patel, Savan, MD; Ren, Yupeng, MS; Xu, Dali, PhD; Zhang, Li-Qun, PhD

Clinical Orthopaedics and Related Research®: November 2018 - Volume 476 - Issue 11 - p 2262–2270
doi: 10.1097/CORR.0000000000000464
BASIC RESEARCH
Buy

Background Partial meniscectomy is one of the most commonly performed orthopaedic procedures for a meniscus tear. Decreased contact area and increased contact pressure have been seen in partial meniscectomies from treatment of various types of meniscal tears; however, the biomechanical effect of a horizontal cleavage tear in the lateral meniscus and subsequent treatment are unknown.

Questions/purposes This study asked whether a horizontal cleavage tear of the lateral meniscus, resecting the inferior leaf, and further resecting the superior leaf would (1) decrease contact area and (2) increase peak contact pressure.

Methods Eleven fresh-frozen human cadaveric knees were evaluated under five conditions of intact meniscus, horizontal cleavage tear, inferior leaf resection, and resection of the inferior and superior leaves of the lateral meniscus. Tibiofemoral contact area and pressure were measured at 0° and 60° knee flexion under an 800-N load, normalized to that at the intact condition of the corresponding knee flexion, and compared across the five previously described conditions.

Results At 0° knee flexion, normalized contact area with inferior leaf resection (65.4% ± 14.1%) was smaller than that at the intact condition (100% ± 0.0%, p < 0.001); smaller than horizontal cleavage tear (94.1% ± 5.8%, p = 0.001) contact area; and smaller than repaired horizontal tear (92.8% ± 8.2%, p = 0.001) contact area. Normalized contact area with further superior leaf resection (50.5% ± 7.3%) was smaller than that at the intact condition (100% ± 0.0%, p < 0.001); smaller than horizontal cleavage tear (94.1% ± 5.8%, p < 0.001) contact area; and smaller than repaired horizontal tear (92.8% ± 8.2%, p < 0.001) contact area. At 60° flexion, normalized contact area with inferior leaf resection (76.1% ± 14.8%) was smaller than that at the intact condition (100% ± 0.0%, p = 0.004); smaller than horizontal cleavage tear (101.8% ± 7.2%, p = 0.006) contact area; and smaller than repaired horizontal tear (104.0% ± 13.3%, p < 0.001) contact area. Normalized contact area with further superior leaf resection (52.1% ± 16.7%) was smaller than that at the intact condition (100% ± 0.0%, p < 0.001); smaller than horizontal cleavage tear (101.8% ± 7.2%, p < 0.001) contact area; and smaller than repaired horizontal tear (104.0% ± 13.3%, p < 0.001) contact area. At 60° flexion, contact area with both leaf resection (52.1% ± 16.7%) was smaller than that with inferior leaf resection (76.1% ± 14.8%, p = 0.039). At 0° knee flexion, peak pressure increased to 127.0% ± 22.1% with inferior leaf resection (p = 0.026) and to 138.6% ± 24.3% with further superior leaf resection (p = 0.002) compared with that at the intact condition (100% ± 0.0%). At 60° flexion, compared with that at the intact condition (100% ± 0.0%), peak pressure increased to 139% ± 33.6% with inferior leaf resection (p = 0.035) and to 155.5% ± 34.7% (p = 0.004) with further superior leaf resection.

Conclusions Resection of the inferior leaf or both leaves of the lateral meniscus after a horizontal cleavage tear resulted in decreased contact area and increased peak contact pressure at 0° and 60° knee flexion.

Clinical Relevance In vitro resection of one or both leaves of a horizontal cleavage tear of the lateral meniscus causes increases in peak pressure, consistent with other types of partial meniscectomies associated in a clinical setting with excessive loading and damage to knee cartilage. Clinical outcomes in patients undergoing partial leaf meniscectomy could confirm this theory. Avoidance of resection may be relatively beneficial for long-term function. The findings of this in vitro study lend biomechanical support for nonoperative management.

J. L. Koh, T. A. Zimmerman, S. Patel, Y. Ren, D. Xu, L.-Q. Zhang, Department of Orthopaedic Surgery, Northshore University HealthSystem, Evanston, IL, USA

D. Xu, L.-Q. Zhang, Department of Physical Therapy and Rehabilitation Science and Department of Orthopaedics, University of Maryland, Baltimore, MD, USA

L.-Q. Zhang, NorthShore University HealthSystem, 2650 Ridge Avenue, SB653 Burch Hall, Evanston, IL 60201, USA, email: zhang_60091@yahoo.com

Each author certifies that neither he or she, nor any member of his or her immediate family, has funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA approval status, of any drug or device before clinical use.

Each author certifies that his or her institution approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at the Department of Orthopaedic Surgery, NorthShore University HealthSystem, Evanston, IL, USA.

Received August 24, 2017

Accepted July 31, 2018

© 2018 Lippincott Williams & Wilkins LWW
You currently do not have access to this article

To access this article:

Note: If your society membership provides full-access, you may need to login on your society website