Objective:
The authors hypothesized that variants within genes, such as COL5A1, COL3A1, COL6A1, and COL12A1, that code for connective tissue components of the musculoskeletal system may modulate susceptibility to exercise-associated muscle cramping (EAMC). Specifically, the aim of this study was to investigate if the COL5A1 rs12722 (C/T), COL3A1 rs1800255 (G/A), COL6A1 rs35796750 (T/C), and COL12A1 rs970547 (A/G) polymorphisms are associated with a history of EAMC.
Design:
Retrospective genetic case–control association study.
Setting:
Participants were recruited at triathlon and ultra-marathon events and were asked to report physical activity, medical history, and cramping history.
Participants:
One hundred sixteen participants with self-reported history of EAMC within the past 12 months before an ultra-endurance event were included as cases in this study (EAMC group). One hundred fifty participants with no self-reported history of previous (lifelong) EAMC were included as controls (NON group).
Interventions:
All participants were genotyped for the selected variants.
Main Outcome Measures:
Differences in genotype frequency distributions, for COL5A1 rs12722, COL3A1 rs1800255, COL6A1 rs35796750, and COL12A1 rs970547, among the cases and controls.
Results:
The COL5A1 CC genotype was significantly overrepresented (P = 0.031) among the NON group (21.8%) when compared with the EAMC group (11.1%). No significant genotype differences were found for the COL3A1 (P = 0.828), COL6A1 (P = 0.300), or COL12A1 (P = 0.120) genotypes between the EAMC and NON groups.
Conclusions:
This study identified, for the first time, the COL5A1 gene as a potential marker for a history of EAMC.