Introduction
Kidney disease is an established complication of HIV infection. HIV-infected persons are at higher risk for proteinuria, CKD, and ESRD compared with uninfected individuals, even after controlling for traditional kidney disease risk factors (1 – 6 ). However, standard clinical measures of kidney disease, such as serum creatinine and dipstick proteinuria, are inadequate in their ability to detect early kidney damage (7 ). There is a strong clinical need for biomarkers that can identify kidney dysfunction at earlier stages and localize pathology within the nephron to provide prognostic and therapeutic guidance in HIV-infected individuals. Although serum cystatin C may be more sensitive than serum creatinine for the estimation of GFR in HIV-infected individuals (8 , 9 ), we hypothesize that tubular injury and dysfunction may occur earlier than clinically apparent reductions in glomerular filtration function.
We previously showed that two tubular injury markers, IL-18 and kidney injury molecule-1 (KIM-1), are present in higher levels in the urine of HIV-infected women compared with uninfected controls and that higher urine IL-18 and KIM-1 predict longitudinal eGFR decline and mortality, independent of traditional kidney disease risk factors and albuminuria (10 – 12 ). In contrast to IL-18 and KIM-1, which are believed to be produced by proximal tubular epithelial cells in the setting of injury (13 , 14 ), α 1-microglobulin (α 1m) is a 26-kD lipocalin that is filtered at the glomerulus but fully reabsorbed by proximal tubular epithelial cells, where it is degraded (15 ). The presence of α 1m in the urine is, therefore, indicative of proximal tubular dysfunction (16 ). A recent proteomic profiling study identified α 1m as one of the earliest biomarkers detectable in urine after ischemic injury (17 ), suggesting that urine α 1m may capture proximal tubular dysfunction at the earliest stages.
In this study of HIV-infected and uninfected women enrolled in the Women’s Interagency HIV Study (WIHS), we tested the hypotheses that HIV infection is associated with a higher prevalence of detectable urine α 1m, that urine α 1m predicts kidney function decline in HIV-infected and uninfected women, and that urine α 1m predicts mortality risk among HIV-infected women, independent of albuminuria and three previously studied tubular injury markers: IL-18, KIM-1, and neutrophil gelatinase-associated lipocalin (NGAL).
Materials and Methods
Study Population
The WIHS is a multicenter, prospective cohort study that enrolled 3067 HIV-infected and 1070 uninfected women from six United States locations: Bronx, Brooklyn, Chicago, Los Angeles, San Francisco, and Washington DC in 1994–1995, 2001–2002, and 2011–2012. Details of study design, data collection methods, and baseline characteristics are published elsewhere (18 , 19 ). Briefly, HIV-infected participants were recruited to be representative of the population of HIV-infected women in the community. Recruitment of uninfected participants targeted women who engaged in high-risk behaviors (defined by self-reported injection drug use or high-risk sexual behavior within the year before enrollment). Participants underwent semiannual visits that included an interviewer-administered questionnaire, a physical examination, and collection of laboratory specimens.
The WIHS Kidney Aging Study was designed as a nested cohort study to investigate the onset of kidney disease in the setting of HIV infection using stored urine and serum specimens. Baseline urine and serum samples were collected between October of 1999 and March of 2000. Serum was also collected at two visits occurring at approximately 4 and 8 years after the baseline of this ancillary study. For this study, we included all 903 HIV-infected and 287 uninfected women who had stored urine available and at least one follow-up serum cystatin C measurement. The institutional review boards of the participating institutions approved the study protocol at all WIHS study sites, and informed consent was obtained from all study participants. This study of kidney injury was also approved by the University of California, San Francisco, the San Francisco Veterans Affairs Medical Center, and the Yale Committees on Human Research.
Exposure Variables
Urine α 1m was measured at the Cincinnati Children's Hospital Medical Center Biomarker Laboratory by a commercially available assay (Siemens BNII nephelometer; Siemens, Munich, Germany). The detectable limit of the α 1m assay was 0.6 mg/dl. Intra- and interassay coefficients of variation (CVs) were 5.2% and 13.2%, respectively. Urine creatinine was measured by colorimetric enzyme assay using a Siemens Dimension Xp and plus HM clinical analyzer (Siemens). All urine specimens were in continuous storage at −80°C until biomarker measurement without prior freeze-thaw; mean urine storage time was 11 years. Laboratory personnel performing the biomarker assays were blinded to clinical information regarding WIHS participants, including their HIV status, and the samples were evaluated in random order. The associations of urine α 1m with kidney function decline were additionally compared with prior analyses of urine albumin-to-creatinine ratio (ACR), IL-18, KIM-1, and NGAL (10 ).
Outcomes
The primary outcomes of this study were longitudinal kidney function decline and all-cause mortality. Kidney function was estimated using the Chronic Kidney Disease Epidemiology Collaboration equation for serum cystatin C (eGFRCys ) (20 , 21 ). We chose a priori to estimate GFR by cystatin C rather than creatinine, because it is less susceptible to bias by muscle mass and health status (8 ). Cystatin C was measured centrally at the University of California at Los Angeles Clinical Immunology Research Laboratory using a particle-enhanced immunoturbidimetric assay (Gentian, Moss, Norway), which has been calibrated against the new World Standard Reference material ERM-DA471/IFCC (20 ). The assay was run concurrently from all three clinic visits, minimizing concerns for drift in the assay over time. Intra-assay CVs, on the basis of 10 replicates, were <2% at serum concentrations of 0.7 and 1.1 mg/L. Interassay CVs were 4.4% and 3.9% at serum concentrations of 0.8 and 2.2 mg/L. As in our prior work, eGFR was capped at 120 ml/min per 1.73 m2 , because the equation has not been validated at higher values (22 ).
We analyzed eGFRCys as a continuous outcome expressed as change in eGFRCys in milliliters per minute per 1.73 m2 per year over approximately 8 years of follow-up. Among HIV-infected women, two dichotomized kidney outcomes were analyzed: (1 ) incident CKD (defined as eGFRCys <60 ml/min per 1.73 m2 at either of two follow-up visits among HIV-infected women with baseline eGFRCys ≥60 ml/min per 1.73 m2 ) and (2 ) rapid decline (defined as 10% or greater annual decline in eGFRCys ). Rapid decline was calculated as the relative change in eGFRCys from baseline to each follow-up visit for each participant. As a sensitivity analysis, we required an eGFRCys decline of ≥1 ml/min per 1.73 m2 per year of follow-up for all patients with incident CKD and found that this approach eliminated only one of 177 patients. Because of the small numbers of patients with incident CKD (n =16) and rapid decline (n =8) among uninfected women, we evaluated 3% and 5% annual eGFRCys declines as dichotomous outcomes in these participants.
Vital status and date of death were determined using the National Death Index and data from medical records and providers. Detailed methods have been described in prior studies (23 – 25 ). Deaths were ascertained over 8 years of follow-up in parallel with the kidney decline analyses. As a sensitivity analysis, we updated vital status through April of 2013, the most recent possible update at the time of manuscript submission. Because there were only 13 deaths among the uninfected participants, we studied the associations of α 1m with mortality risk only in HIV-infected women.
Covariates
The following characteristics were tested as candidate covariates in all multivariate models: age and race/ethnicity, systolic and diastolic BP, antihypertensive use, diabetes (defined using confirmatory criteria for fasting glucose ≥126 mg/dl, self-reported diabetes, self-reported diabetes medication use, or hemoglobin A1c≥6.5%), cigarette smoking status (current, former, or never), menopause status, LDL and HDL cholesterol, triglycerides, serum albumin, body mass index, waist circumference, hepatitis C virus (HCV) infection (confirmed by detectable HCV RNA after a positive HCV antibody result), and current heroin use. Candidate HIV-related characteristics included current CD4 lymphocyte count, nadir CD4 lymphocyte count, history of AIDS diagnosis, current HIV viral load, current highly active antiretroviral therapy use, current nucleoside reverse transcription inhibitor use, current non-nucleoside reverse transcription inhibitor use, and current protease inhibitor use. During the study period, the prevalence of tenofovir use increased from <1% at baseline to 49% at the end of the 8-year follow-up period. Multiple imputation with the Markov chain Monte Carlo method was used to impute missing covariates with five imputations to yield approximately 95% relative efficiency (26 ). The percentage of missing observations for each covariate ranged from <1% to 15%.
Statistical Analyses
Forty-five percent of participants had undetectable urine α 1m, and the distribution among those with detectable α 1m was right-skewed. Because of the left-censored nature of the data, we analyzed α 1m using three approaches: a dichotomized variable (detectable or undetectable), a log-transformed continuous variable using models that accommodate left-censored data, and an ordinal variable with three categories of urine α 1m–to-creatinine ratio (α 1m/cr). For analyses of HIV-infected and uninfected women modeling α 1m as an ordinal variable, category 1 of α 1m/cr included all participants with undetectable urine α 1m. The remaining participants were divided at the median value of urine α 1m/cr into categories 2 and 3 for HIV-infected and uninfected participants separately.
We compared baseline characteristics of HIV-infected women across the three categories of urine α 1m/cr using chi-squared and Kruskal–Wallis tests for categorical and continuous variables, respectively; these comparisons were replicated among the uninfected participants. We then used Poisson regression with a robust variance estimator (27 ) to assess the cross-sectional association of HIV infection with detectable urine α 1m and identify factors associated with detectable urine α 1m among HIV-infected and uninfected women. As an alternate approach, we used multivariable generalized γ -regression models to identify factors associated with higher urine α 1m concentration in HIV-infected and uninfected women separately. Similar to the Tobit regression method, generalized γ -regression models accommodate left-censored data but also allow log transformation of urine α 1m to normalize its right-skewed distribution. Results were back-transformed to produce estimated percentage differences in urine α 1m attributable to each factor.
Next, we used linear mixed models to evaluate the associations of urine α 1m/cr categories with the continuous outcome of eGFRCys with random intercepts and slopes across time to account for the correlation between repeated measures at baseline, year 4, and year 8. Multivariate models sequentially adjusted for demographics, traditional risk factors for kidney disease progression, baseline eGFRCys , ACR, and the previously studied biomarkers urine IL-18/cr, KIM-1/cr, and NGAL/cr. As a sensitivity analysis, we additionally adjusted for tenofovir use during follow-up. To compare the effect size of α 1m/cr with those of the previously studied biomarkers, we modified our previously published WIHS analyses (10 ) assessing the associations of ACR, IL-18/cr, KIM-1/cr, and NGAL/cr with eGFRCys by incorporating α 1m/cr into the final multivariate-adjusted models for each biomarker.
We then used Poisson regression with a robust variance estimator to assess the associations of urine α 1m/cr with incident CKD and 10% annual eGFRCys decline among HIV-infected individuals and with 3% and 5% annual eGFRCys declines among uninfected individuals. We calculated risk ratios for each outcome using category 1 as the reference category. Women with eGFRCys <60 ml/min per 1.73 m2 at baseline were excluded from the incident CKD analysis. To evaluate for possible effect modification by tenofovir use during follow-up, analyses of HIV-infected participants were stratified by tenofovir use during follow-up (ever used versus never used), and we evaluated an interaction term (α 1m×tenofovir) for statistical significance in the overall model.
To account for losses to follow-up in all kidney function decline analyses, we adjusted estimates using an inverse probability weighting approach by modeling the participant’s probability of having a nonmissing outcome, with separate weights calculated at each visit (28 ). The inverse of this probability was then used as a weight applied to persons with known outcomes in the multivariable regression analyses of kidney decline.
Finally, we used unadjusted generalized additive models to produce a spline plot depicting the probability of mortality over the detectable range of α 1m/cr in HIV-infected participants. We obtained P values for the association of α 1m/cr with mortality and the test of nonlinearity. We also evaluated the associations of urine α 1m/cr categories with all-cause mortality using multivariable Cox proportional hazards and the same series of adjusted models as for the kidney function decline outcomes.
Spearman coefficients were used to evaluate correlations between α 1m, IL-18, KIM-1, NGAL, ACR, and urine creatinine. Because of the moderately strong intercorrelations between all biomarkers and urine creatinine (Supplemental Table 1), primary analyses standardized the biomarkers to urine creatinine. In sensitivity analyses, we evaluated the associations of unstandardized biomarker levels with kidney decline and mortality using the methods described above.
All analyses were conducted using SAS version 9.3 (SAS Institute Inc., Cary, NC).
Results
Baseline Characteristics of WIHS Participants
The median age was 41 years among the 903 HIV-infected women and 40 years among the 287 uninfected women included in this study. At baseline, 9% of HIV-infected and 2% of uninfected women had an eGFRCys <60 ml/min per 1.73 m2 (P <0.001); 13.8% of the participants were lost to follow-up after the second visit; these individuals provided a mean follow-up time of 3.7 years.
HIV-infected women in the highest category of α 1m/cr were older, were more often African American, and had higher prevalence of smoking, diabetes mellitus, hypertension, HCV infection, and albuminuria as well as lower CD4 counts and higher HIV RNA levels (Table 1 ). Among uninfected participants, the highest α 1m/cr category was characterized by older age and higher prevalence of smoking, diabetes mellitus, hypertension, HCV infection, heroin use, and albuminuria (Table 2 ).
Table 1: Baseline characteristics of HIV-infected women in the Women’s Interagency HIV Study stratified by urine α 1-microglobulin category
Table 2: Baseline characteristics of HIV-uninfected women in the Women’s Interagency HIV Study stratified by urine α 1-microglobulin category
Prevalence of Detectable Urine α 1m in HIV-Infected and Uninfected Women
Urine α 1m was detectable in 545 (60%) HIV-infected and 114 (40%) uninfected women (P <0.001). HIV infection remained associated with a 51% higher prevalence of detectable α 1m after multivariable adjustment for age, race, and traditional kidney disease risk factors (Table 3 ). The association was slightly attenuated with additional adjustment for ACR and eGFRCys but remained statistically significant.
Table 3: Association of HIV infection with detectable urine α 1-microglobulin in HIV-infected (n =903) versus uninfected (n =287) women at baseline visit
Factors Associated with Urinary α 1m in HIV-Infected and Uninfected Women
Among HIV-infected participants, African-American race (relative risk [RR], 1.32; 95% confidence interval [95% CI], 1.04 to 1.69; P =0.02), current smoking (RR, 1.24; 95% CI, 1.04 to 1.47; P =0.01), and CD4 lymphocyte count <200 cells/mm3 (RR, 1.27; 95% CI, 1.04 to 1.56; P =0.02) were independently associated with detectable α 1m. When we modeled urine α 1m concentration as a continuous outcome, African-American race was associated with 52% higher α 1m (95% CI, 22% to 90%; P <0.001), HCV infection was associated with 22% higher α 1m (95% CI, 2% to 46%; P =0.03), hypertension was associated with 29% higher α 1m (95% CI, 7% to 57%; P =0.01), and menopause was associated with 39% higher α 1m (95% CI, 10% to 77%; P <0.01) in adjusted analyses. HIV-related factors independently associated with higher urine α 1m levels included CD4 lymphocyte count <200 cells/mm3 (65%; 95% CI, 34% to 103%; P <0.001) and history of AIDS (30%; 95% CI, 10% to 53%; P =0.002).
Among uninfected women, factors associated with higher levels of α 1m included diabetes mellitus (66%; 95% CI, 7% to 157%; P =0.02), heroin use (79%; 95% CI, 11 to 190; P =0.02), HCV infection (55%; 95% CI, 11 to 117; P =0.01), and current smoking (82%; 95% CI, 36% to 145%; P <0.001).
Association of Urine α 1m with Kidney Function Decline in HIV-Infected and Uninfected Women
Over the approximately 8-year follow-up period, the rate of annual eGFRCys decline was −1.18 (95% CI, −1.29 to −1.06) ml/min per 1.73 m2 in HIV-infected women and −0.97 (95% CI, −1.16 to −0.79) ml/min per 1.73 m2 in uninfected women.
Compared to HIV-infected women with undetectable α 1m, HIV-infected women in the highest category of α 1m/cr experienced faster eGFRCys decline over the follow-up period. The adjusted difference in annual eGFRCys change between categories 3 and 1 was −0.19 (95% CI, −0.22 to −0.16) ml/min per 1.73 m2 per year in multivariate analyses and −0.16 (95% CI, −0.19 to −0.13) ml/min per 1.73 m2 per year after additional adjustment for ACR, IL-18/cr, KIM-1/cr, and NGAL/cr. Adjustment for tenofovir use during follow-up did not alter the association of α 1m/cr with annual eGFR change. Compared with ACR, IL-18, KIM-1, and NGAL, urine α 1m was associated with the largest annual change in eGFRCys in multivariate models adjusting for all four biomarkers in creatinine-standardized (Figure 1 ) and unstandardized analyses (Supplemental Figure 1).
Figure 1: Magnitudes of associations with annual eGFR change across creatinine-standardized urine biomarkers. All estimates were derived from multivariate models comparing category 3 with category 1 for α 1-microglobulin (α 1m) and comparing highest with lowest tertile for albumin-to-creatinine ratio (ACR), IL-18, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL). Multivariate models were adjusted for age, race, traditional kidney disease risk factors, HIV-related factors, and all displayed biomarkers. Results are reported as eGFR change in milliliters per minute per 1.73 m2 per year (95% confidence interval [95% CI]).
Among HIV-infected women, 177 (22%) and 61 (7%) cases of incident CKD and 10% annual eGFRCys decline occurred, respectively. Relative to those with undetectable α 1m, the highest category of α 1m/cr was associated with 2- to 3-fold risks of incident CKD and rapid decline after adjustment for demographics, baseline eGFRCys , traditional kidney disease risk factors, and HIV-related factors (Table 4 ). Even after additional adjustment for ACR, IL-18, KIM-1, and NGAL, the highest category of α 1m/cr remained associated with a 1.9-fold risk of incident CKD and a 2.8-fold risk of rapid decline. Results were similar when urine α 1m was modeled without standardization to urine creatinine (Supplemental Table 2) and when we required an eGFRCys decline of ≥1 ml/min per 1.73 m2 per year of follow-up for all patients with incident CKD. There were no statistically significant interactions with kidney decline outcomes when individuals were stratified by tenofovir use during follow-up.
Table 4: Associations of urine α 1-microglobulin with kidney function decline and mortality in HIV-infected women.
Among the uninfected participants, we examined the associations of urine α 1m/cr with continuous eGFRCys decline and two dichotomous outcomes: 3% and 5% annual eGFRCys decline. Compared to individuals with undetectable α1m, the highest category of α 1m/cr was associated with −0.21 (95% CI, −0.28 to −0.13; P <0.001) ml/min per 1.73 m2 annual eGFRCys decline in multivariate analyses and −0.27 (95% CI, −0.34 to −0.19; P <0.001) ml/min per 1.73 m2 annual eGFRCys decline after additional adjustment for ACR, IL-18/cr, KIM-1/cr, and NGAL/cr. Individuals in the highest α 1m/cr category had approximately 2-fold adjusted risks of 3% and 5% annual eGFRCys decline relative to those with undetectable α 1m (Table 5 ).
Table 5: Associations of urine α 1-microglobulin with kidney function decline in HIV-uninfected women
Association of Urine α 1m with Mortality in HIV-Infected Women
During the 8 years of follow-up in the WIHS Kidney Aging Study, there were 128 (14%) deaths among 903 HIV-infected women included in this study. When we used a spline plot to assess probability of mortality across the range of detectable urine α 1m/cr (Figure 2 ), higher urine α 1m/cr levels were incrementally associated with higher mortality (P <0.001). Although the slope appeared to be steeper at higher values of α 1m/cr, the test for nonlinearity did not reach statistical significance (P =0.37).
Figure 2: Spline plot displaying unadjusted association of urine α1-microglobulin with mortality over a median follow-up of 8 years. Solid line denotes predicted probability of mortality; dotted lines represent 95% confidence bounds. Below detectable estimate represents the proportion of deaths in individuals with undetectable α 1-microglobulin. The highest 2.5% of values were truncated. P <0.001 for association of urine α 1-microglobulin–to-creatinine ratio with mortality. P =0.37 for test of nonlinearity. cr, creatinine.
Compared to women with undetectable α 1m, women in the highest category of α 1m/cr had a 1.7-fold risk of all-cause mortality in multivariate analyses (Table 4 ). Results were similar when α 1m was not standardized to urine creatinine (hazard ratio [HR], 1.64; 95% CI, 0.94 to 2.87) (Supplemental Table 2). Updating vital status through April of 2013 resulted in a total of 224 deaths among 903 HIV-infected participants, with a median follow-up of 13 years. The highest category of α 1m/cr remained independently associated with mortality in the multivariate-adjusted model (HR, 1.49; 95% CI, 1.05 to 2.11; P =0.03), but the association was no longer statistically significant after adjustment for albuminuria and the additional biomarkers (HR, 1.42; 95% CI, 0.98 to 2.05; P =0.06).
Discussion
In this large cohort of women with predominantly preserved eGFR, HIV-infected women had a higher prevalence of detectable α 1m than uninfected women. Among HIV-infected and uninfected women, urine α 1m was predictive of kidney function decline independent of traditional risk factors, albuminuria, and other biomarkers of tubular injury, including IL-18, KIM-1, and NGAL. Additionally, urine α 1m was independently associated with mortality risk among HIV-infected women. To our knowledge, this is the first ambulatory cohort study to investigate the ability of urine α 1m to predict longitudinal outcomes in HIV-infected and uninfected women.
Formerly known as Protein HC, α 1m is a size- and charge-heterogeneous lipocalin found in blood, liver, kidney, and connective tissues of a variety of vertebrate species (15 ). Synthesized by the liver, α 1m circulates in the blood in free and protein-bound forms, with approximately 50% of plasma α 1m bound to IgA. The 26-kD free form of α 1m is filtered by the glomerulus and almost entirely reabsorbed by proximal tubular epithelial cells, where it is degraded by intracellular lysosomes (29 , 30 ). Active transport of α 1m from the luminal space into proximal tubular epithelial cells is mediated by the endocytic receptor megalin, which also facilitates reabsorption of other low molecular mass proteins, such as retinol-binding protein and β 2-microglobulin (31 ). Although its exact physiologic function remains unknown, α 1m is hypothesized to have antioxidant properties and possible roles in humoral or cellular immune response (16 ).
Urine α 1m was recognized as a marker of proximal tubular dysfunction over two decades ago, but its use in clinical research studies was sparse until recent years. By proteomic analysis, Devarajan et al. (17 ) identified α 1m as one of the earliest urinary markers of AKI in children undergoing cardiopulmonary bypass surgery, with urine levels rising 3-fold within 2 hours of surgery compared with controls who did not develop AKI (P <0.01). Wu et al. (32 ) additionally showed that individuals with drug-induced interstitial nephritis had higher levels of urine α 1m compared with age- and sex-matched controls and that urine α 1m levels correlated with the degree of inflammatory infiltration, interstitial edema, and tubular atrophy on kidney biopsy. Finally, O’Seaghdha et al. (33 ) investigated the associations of multiple urinary biomarkers, including α 1m, with incident kidney disease and related outcomes in 2948 Framingham Heart Study participants. Although urine α 1m was not associated with incident CKD or albuminuria, each 1 SD of log-transformed α 1m was associated with a 30% higher risk for all-cause mortality (33 ).
Although the magnitudes of association between α 1m levels and annual eGFR decline in our study may appear small (−0.19 and −0.21 ml/min per 1.73 m2 per year in the HIV-infected and uninfected participants, respectively), the effect sizes are comparable with those of established risk factors for kidney decline in other populations. In the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study of patients with type 1 diabetes, microalbuminuria (defined as 30–299 mg/d) was associated with −0.12-ml/min per 1.73 m2 annual eGFR change compared with no albuminuria (34 ). In the same study, systolic BP≥130 was associated with a −0.22-ml/min per 1.73 m2 annual eGFR change compared with systolic BP<120, and hemoglobin A1c levels of 8–8.9 were associated with −0.23 ml/min per 1.73 m2 annual eGFR decline compared with hemoglobin A1c levels of <7. These observations suggest that associations of this magnitude are clinically important. Future studies must validate our findings in additional cohorts of individuals with varied risk factors for kidney disease progression.
In persons with HIV infection, proximal tubular dysfunction is an increasingly common presentation of renal toxicity (35 ), with one study reporting a 25% prevalence of tubular damage in individuals on antiretroviral therapy without proteinuria or significant impairment of glomerular function (36 ). Recent evidence also suggests that α 1m and other low molecular mass proteins can detect subclinical impairments in proximal tubular function among HIV-infected individuals receiving tenofovir, a nucleotide analog reverse transcription inhibitor associated with a particular form of proximal tubular dysfunction known as Fanconi’s syndrome (37 ), AKI (38 ), and CKD (39 ). In a 48-week trial, Vrouenraets et al. (40 ) randomized 20 individuals with HIV infection to continue therapy with zidovudine/lamivudine or switch to tenofovir/emtricitabine and noted an approximately 50% rise (P =0.09) in mean urine α 1m/cr in subjects randomized to tenofovir/emtricitabine compared with unchanged urine α 1m/cr levels in persons continued on zidovudine/lamivudine. Similarly, Post et. al reported higher urine levels at 48 weeks of retinol-binding protein and β 2-microglobulin by 50% (P <0.001) and 24% (P <0.001), respectively, in antiretroviral-naïve individuals randomized to tenofovir/emtricitabine (n =193) compared with abacavir/lamivudine (n =192) (41 ). Although urine α 1m was not measured in that study, retinol-binding protein and β 2-microglobulin undergo transport into proximal tubular cells by the same endocytic receptor as urine α 1m (31 ), suggesting that these low molecular mass proteins may provide similar information when measured in urine. Notably, none of the subjects in the trial described above met the protocol definition for proximal tubular dysfunction, which relied on other criteria, such as hypophosphatemia, hypokalemia, nondiabetic glycosuria, metabolic acidosis, and rise in serum creatinine. This finding highlights the need for novel biomarkers that capture drug-related toxicity before the onset of clinical Fanconi’s syndrome or reduction in glomerular filtration function.
This study offers several important implications for clinical care. First, the associations of urine α 1m with kidney function decline and mortality suggest that minor impairments of proximal tubular function are not benign. Additional studies should investigate the potential reversibility of proximal tubular dysfunction to determine whether tubular dysfunction is a modifiable risk factor for kidney decline. Larger studies of α 1m in diverse populations may also enable the identification of a threshold α 1m level beyond which kidney risk escalates. Second, our study utilized urine specimens collected prior to the widespread use of tenofovir. Although subsequent tenofovir use did not modify the observed associations of urine α 1m with kidney decline outcomes, our study was not designed or powered to determine whether urinary α 1m identifies a subset of individuals who are particularly susceptible to tubular toxicity from tenofovir or other drugs. Future clinical studies could specifically evaluate the potential applications of α 1m in risk stratification before initiation of tenofovir and early detection of tubular toxicity during therapy. Additionally, a growing number of uninfected individuals at high risk for HIV acquisition are now receiving pre-exposure prophylaxis with tenofovir. Early recognition of tubular toxicity from tenofovir will be particularly important in this population of predominantly young individuals, in whom the risks of therapy are incompletely delineated. Third, biomarkers sensitive for the detection of tubular dysfunction and injury could revolutionize our methods for detecting nephrotoxicity in drug trials, which often fail to identify drug-related nephrotoxicity in initial stages of development because of their sole reliance on serum creatinine and proteinuria.
There are several limitations to this study. First, because we exclusively studied women, we cannot generalize these results to men. Second, biomarker measurements were made using urine samples collected over a decade ago. However, with protein degradation over time, we would expect our results to shift toward null findings. Third, although it would have been desirable to confirm the diagnosis of CKD with at least two separate eGFR measurements at the 4- and 8-year time points, this was not feasible because of the availability of only one serum sample per patient at each of these visits. Fourth, to ensure comparability with the HIV-infected women, recruitment of the uninfected WIHS cohort targeted women who engage in high-risk behaviors, such as injection drug use and high-risk sexual behavior (19 ). Therefore, the uninfected women in this study had a high prevalence at baseline of established risk factors for kidney disease. This may limit the generalizability of our findings to healthier, uninfected populations. Fifth, because of the low rates of incident CKD, 10% annual eGFRCys decline, and mortality in the uninfected participants, we lacked sufficient power to analyze the associations of α 1m with these outcomes. Sixth, we did not have access to serum concentrations of α 1m, and therefore, we cannot exclude the possibility that higher serum levels in susceptible individuals contributed to our observations. Seventh, although we adjusted for multiple potential confounders, the possibility of residual confounding exists for our associations of urine α 1m with kidney function decline and mortality.
In conclusion, we found that urine α 1m independently predicted kidney function decline in HIV-infected and uninfected women as well as mortality risk among HIV-infected women, highlighting the importance of proximal tubular dysfunction to longitudinal outcomes. Future research should identify temporal patterns of α 1m excretion and their associations with clinical outcomes, and determine specific thresholds of risk in HIV-infected and uninfected individuals. In HIV-infected persons, studies should specifically investigate the role of urine α 1m in detection of drug toxicity before the onset of overt kidney disease. Although our findings must be validated in subsequent cohorts, urine α 1m seems to be a promising candidate for inclusion in a future kidney biomarker panel.
Disclosures
R.S. received an honorarium from Merck for participating in a Renal Expert Input Forum; this honorarium was donated to the Northern California Institute for Research and Education to support kidney research. C.R.P. is a coinventor on an IL-18 patent issued to the University of Colorado.
Acknowledgments
The WIHS Kidney Aging Study is funded by Grant 1 R01 AG034853-01A2 (Principal Investigator: M.G.S.), which was administered by the Northern California Institute for Research and Education with resources of the Veterans Affairs Medical Center (San Francisco, California). M.M.E. is supported by Grant 1K23-DK-081317. Data in this manuscript were collected by the Women's Interagency HIV Study (WIHS). WIHS (Principal Investigators): UAB-MS WIHS (Michael Saag, Mirjam-Colette Kempf, and Deborah Konkle-Parker), Grant U01-AI-103401; Atlanta WIHS (Ighovwerha Ofotokun and Gina Wingood), Grant U01-AI-103408; Bronx WIHS (Kathryn Anastos), Grant U01-AI-035004; Brooklyn WIHS (Howard Minkoff and Deborah Gustafson), Grant U01-AI-031834; Chicago WIHS (M.H.C.), Grant U01-AI-034993; Metropolitan Washington WIHS (M.Y.), Grant U01-AI-034994; Miami WIHS (Margaret Fischl and Lisa Metsch), Grant U01-AI-103397; UNC WIHS (Adaora Adimora), Grant U01-AI-103390; Connie Wofsy Women’s HIV Study, northern California (Ruth Greenblatt, Bradley Aouizerat, and Phyllis Tien), Grant U01-AI-034989; WIHS Data Management and Analysis Center (Stephen Gange and Elizabeth Golub), Grant U01-AI-042590; and Southern California WIHS (Alexandra Levine and M.N.), Grant U01-HD-032632 (WIHS I to WIHS IV). The WIHS is funded primarily by the National Institute of Allergy and Infectious Diseases, with additional cofunding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Cancer Institute, the National Institute on Drug Abuse, and the National Institute on Mental Health. Targeted supplemental funding for specific projects is also provided by the National Institute of Dental and Craniofacial Research, the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Deafness and Other Communication Disorders, and the National Institutes of Health (NIH) Office of Research on Women’s Health. WIHS data collection is also supported by Grants UL1-TR000004 (to UCSF CTSA) and UL1-TR000454 (to Atlanta CTSA).
The contents of this publication are solely the responsibility of the authors and do not represent the official views of the NIH.
Published online ahead of print. Publication date available at www.cjasn.org .
This article contains supplemental material online at http://cjasn.asnjournals.org/lookup/suppl/doi:10.2215/CJN.03220314/-/DCSupplemental .
References
1. Gardner LI, Holmberg SD, Williamson JM, Szczech LA, Carpenter CC, Rompalo AM, Schuman P, Klein RSHIV Epidemiology Research Study Group: Development of proteinuria or elevated serum creatinine and mortality in HIV-infected women. J Acquir Immune Defic Syndr 32: 203–209, 2003
2. Aaron KJ, Kempf MC, Christenson RH, Wilson CM, Muntner P, Shrestha S: Prevalence of proteinuria and elevated serum cystatin C among HIV-Infected Adolescents in the Reaching for Excellence in Adolescent Care and Health (REACH) study. J Acquir Immune Defic Syndr 61: 499–506, 2012
3. Wyatt CM, Winston JA, Malvestutto CD, Fishbein DA, Barash I, Cohen AJ, Klotman ME, Klotman PE: Chronic kidney disease in HIV infection: An urban epidemic. AIDS 21: 2101–2103, 2007
4. Lucas GM, Mehta SH, Atta MG, Kirk GD, Galai N, Vlahov D, Moore RD: End-stage renal disease and chronic kidney disease in a cohort of African-American HIV-infected and at-risk HIV-seronegative participants followed between 1988 and 2004. AIDS 21: 2435–2443, 2007
5. Eggers PW, Kimmel PL: Is there an epidemic of HIV Infection in the US ESRD program? J Am Soc Nephrol 15: 2477–2485, 2004
6. Rasch MG, Helleberg M, Feldt-Rasmussen B, Kronborg G, Larsen CS, Pedersen C, Pedersen G, Gerstoft J, Obel N: Increased risk of dialysis and end-stage renal disease among HIV patients in Denmark compared with the background population. Nephrol Dial Transplant 29: 1232–1238, 2014
7. Wu I, Parikh CR: Screening for kidney diseases: Older measures versus novel biomarkers. Clin J Am Soc Nephrol 3: 1895–1901, 2008
8. Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, Shlipak MG: Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: The FRAM study. Arch Intern Med 167: 2213–2219, 2007
9. Driver TH, Scherzer R, Peralta CA, Tien PC, Estrella MM, Parikh CR, Butch AW, Anastos K, Cohen MH, Nowicki M, Sharma A, Young MA, Abraham A, Shlipak MG: Comparisons of creatinine and cystatin C for detection of kidney disease and prediction of all-cause mortality in HIV-infected women. AIDS 27: 2291–2299, 2013
10. Jotwani V, Scherzer R, Abraham A, Estrella MM, Bennett M, Devarajan P, Anastos K, Cohen MH, Nowicki M, Sharma A, Young M, Tien PC, Grunfeld C, Parikh CR, Shlipak MG: Does HIV infection promote early kidney injury in women? Antivir Ther 19: 79–87, 2014
11. Shlipak MG, Scherzer R, Abraham A, Tien PC, Grunfeld C, Peralta CA, Devarajan P, Bennett M, Butch AW, Anastos K, Cohen MH, Nowicki M, Sharma A, Young MA, Sarnak MJ, Parikh CR: Urinary markers of kidney injury and kidney function decline in HIV-infected women. J Acquir Immune Defic Syndr 61: 565–573, 2012
12. Peralta C, Scherzer R, Grunfeld C, Abraham A, Tien P, Devarajan P, Bennett M, Butch A, Anastos K, Cohen M, Nowicki M, Sharma A, Young M, Sarnak M, Parikh C, Shlipak M: Urinary biomarkers of kidney injury are associated with all-cause mortality in the Women’s Interagency HIV Study (WIHS). HIV Med 15: 291–300, 2014
13. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL: Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43: 405–414, 2004
14. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV: Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal
proximal tubule injury. Kidney Int 62: 237–244, 2002
15. Akerström B, Lögdberg L, Berggård T, Osmark P, Lindqvist A: alpha(1)-Microglobulin: A yellow-brown lipocalin. Biochim Biophys Acta 1482: 172–184, 2000
16. Weber MH, Verwiebe R: Alpha 1-microglobulin (protein HC): Features of a promising indicator of proximal tubular dysfunction. Eur J Clin Chem Clin Biochem 30: 683–691, 1992
17. Devarajan P, Krawczeski CD, Nguyen MT, Kathman T, Wang Z, Parikh CR: Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis 56: 632–642, 2010
18. Barkan SE, Melnick SL, Preston-Martin S, Weber K, Kalish LA, Miotti P, Young M, Greenblatt R, Sacks H, Feldman JWIHS Collaborative Study Group: The Women’s Interagency HIV Study. Epidemiology 9: 117–125, 1998
19. Bacon MC, von Wyl V, Alden C, Sharp G, Robison E, Hessol N, Gange S, Barranday Y, Holman S, Weber K, Young MA: The Women’s Interagency HIV Study: An observational cohort brings clinical sciences to the bench. Clin Diagn Lab Immunol 12: 1013–1019, 2005
20. Inker LA, Eckfeldt J, Levey AS, Leiendecker-Foster C, Rynders G, Manzi J, Waheed S, Coresh J: Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis 58: 682–684, 2011
21. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, Rossert J, Van Lente F, Bruce RD 3rd, Zhang YL, Greene T, Levey AS: Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 51: 395–406, 2008
22. Longenecker CT, Scherzer R, Bacchetti P, Lewis CE, Grunfeld C, Shlipak MG: HIV viremia and changes in kidney function. AIDS 23: 1089–1096, 2009
23. Wyatt CM, Hoover DR, Shi Q, Tien PC, Karim R, Cohen MH, Goderre JL, Seaberg EC, Lazar J, Young MA, Klotman PE, Anastos K: Pre-existing albuminuria predicts AIDS and non-AIDS mortality in women initiating antiretroviral therapy. Antivir Ther 16: 591–596, 2011
24. Cohen MH, French AL, Benning L, Kovacs A, Anastos K, Young M, Minkoff H, Hessol NA: Causes of death among women with human immunodeficiency virus infection in the era of combination antiretroviral therapy. Am J Med 113: 91–98, 2002
25. French AL, Gawel SH, Hershow R, Benning L, Hessol NA, Levine AM, Anastos K, Augenbraun M, Cohen MH: Trends in mortality and causes of death among women with HIV in the United States: A 10-year study. J Acquir Immune Defic Syndr 51: 399–406, 2009
26. Gilks WR, Richardson S, Spiegehalter DJ: Markov Chain Monte Carlo in Practice, London, Chapman & Hall, 1996
27. Zou G: A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159: 702–706, 2004
28. Robins JM, Finkelstein DM: Correcting for noncompliance and dependent censoring in an AIDS Clinical Trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics 56: 779–788, 2000
29. Christensen EI, Nielsen S: Structural and functional features of protein handling in the kidney
proximal tubule . Semin Nephrol 11: 414–439, 1991
30. Strober W, Waldmann TA: The role of the kidney in the metabolism of plasma proteins. Nephron 13: 35–66, 1974
31. Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JO, Otto A, Christensen EI, Willnow TE: Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 155: 1361–1370, 1999
32. Wu Y, Yang L, Su T, Wang C, Liu G, Li XM: Pathological significance of a panel of urinary biomarkers in patients with drug-induced tubulointerstitial nephritis. Clin J Am Soc Nephrol 5: 1954–1959, 2010
33. O’Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS: Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol 24: 1880–1888, 2013
34. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Zinman B, Steffes MWDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group: Longitudinal changes in estimated and measured GFR in type 1 diabetes. J Am Soc Nephrol 25: 810–818, 2014
35. Del Palacio M, Romero S, Casado JL: Proximal tubular renal dysfunction or damage in HIV-infected patients. AIDS Rev 14: 179–187, 2012
36. Ando M, Yanagisawa N, Ajisawa A, Tsuchiya K, Nitta K: Kidney tubular damage in the absence of glomerular defects in HIV-infected patients on highly active antiretroviral therapy. Nephrol Dial Transplant 26: 3224–3229, 2011
37. Hall AM, Hendry BM, Nitsch D, Connolly JO: Tenofovir-associated kidney toxicity in HIV-infected patients: A review of the evidence. Am J Kidney Dis 57: 773–780, 2011
38. Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D’Agati VD, Markowitz GS: Tenofovir nephrotoxicity: Acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78: 1171–1177, 2010
39. Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, Grunfeld C, Shlipak MG: Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS 26: 867–875, 2012
40. Vrouenraets SM, Fux CA, Wit FW, Garcia EF, Furrer H, Brinkman K, Hoek FJ, Abeling NG, Krediet RT, Reiss PPrepare Study Group: Persistent decline in estimated but not measured glomerular filtration rate on tenofovir may reflect tubular rather than glomerular toxicity. AIDS 25: 2149–2155, 2011
41. Post FA, Moyle GJ, Stellbrink HJ, Domingo P, Podzamczer D, Fisher M, Norden AG, Cavassini M, Rieger A, Khuong-Josses MA, Branco T, Pearce HC, Givens N, Vavro C, Lim ML: Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naive, HIV-1-infected adults: 48-Week results from the ASSERT study. J Acquir Immune Defic Syndr 55: 49–57, 2010