Battleground: Chronic Kidney Disorders Mineral and Bone Disease—Calcium Obsession, Vitamin D, and Binder Confusion : Clinical Journal of the American Society of Nephrology

Journal Logo



Chronic Kidney Disorders Mineral and Bone Disease—Calcium Obsession, Vitamin D, and Binder Confusion

Kovesdy, Csaba P.; Mehrotra, Rajnish; Kalantar-Zadeh, Kamyar

Author Information
Clinical Journal of the American Society of Nephrology 3(1):p 168-173, January 2008. | DOI: 10.2215/CJN.03850907
  • Free


Few failing organs have an impact as widespread as the kidneys, but none of the deleterious consequences of chronic kidney disease (CKD) has had such an intriguing and convoluted history as what is referred to as the “mineral and bone disorders” of the CKD (CKD-MBD) (1), which encompasses such traditional concepts as renal osteodystrophy and secondary hyperparathyroidism (SHPT). As one of the first described complications of uremia, CKD-MBD has enjoyed the undivided attention of the nephrology community. This is not only because of the beautiful and complex interrelationship of calcium, phosphorus, vitamin D, and parathyroid hormone (PTH) but also because of mounting evidence showing a link between various aspects of CKD-MBD and adverse outcomes, especially in patients who undergo maintenance dialysis (2,3).

With most of the abnormalities of CKD-MBD amenable to therapeutic interventions and no studies proving unequivocal superiority of any one treatment regimen, health care professionals have been targeted aggressively by pharmaceutical companies that are trying to use any available scientific evidence to promote their products. The competing efforts of many such companies led to doctors, nurses, and dietitians being bombarded by a large amount of information about the management of CKD-MBD, which is often contradictory and may be commercially biased. As a result, both providers and patients are somewhat confused about what the best management for CKD-MBD is. In this article, we provide a critical overview of how the current landscape of CKD-MBD has evolved from a pharmaceutical standpoint and assess what the most pressing issues are for practitioners in this field.

Evolution of Uremic Osteodystrophy

Renal osteodystrophy has long been recognized as a prominent feature of the uremic syndrome. Until recently, SHPT has been considered to be the central abnormality that leads to the bone disease associated with uremia. In the previous three decades, experts have argued about the relative importance of hyperphosphatemia, hypocalcemia, and vitamin D deficiency in the genesis of this SHPT (48). Thus, SHPT had been managed by the provision of supplemental calcium (in the form of oral supplementation and through dialysate calcium concentrations as high as 3.5 mEq/L) and active vitamin D in the form of synthetic calcitriol (in the United States) and alfacalcidol (in Europe) (911). Until the mid-1980s, hyperphosphatemia was managed by aluminum-containing phosphorus binders and dietary phosphorus restriction (8). Emerging data on the untoward consequences of aluminum-based binders (dementia, refractory anemia, and osteomalacia [12,13]) made calcium-based medications the binders of choice by the early 1990s with the added purported benefit of further suppressing PTH production (14).

Paradigm Shift in the Management of Renal Osteodystrophy

Two major events in the mid-1990s led to a drastic paradigm shift in the foregoing management regimen. First, the advent of the so-called “low-turnover (adynamic) bone disease,” which was attributed to an oversuppression of PTH secretion by administration of calcitriol and hypercalcemia and/or “calcium-loading” from the high calcium intake and the supraphysiologic dialysate calcium concentration (15). Second, vascular calcification was found to be highly prevalent in patients with CKD and associated with poor survival (16,17); this, too, was found to be associated with higher serum calcium level and higher calcium intake in some (1719) but not all studies (2024). As a result of the consequent calcium-loading, dialysate calcium concentration was decreased from 3.5 to 2.5 mEq/L by the turn of the millennium, and a significant move toward using non–calcium-based binders has arisen (25).

These events coincided with several major observational studies showing that hyperphosphatemia and SHPT were associated with increased mortality (3,26), thus raising the stakes for therapeutic interventions that target the abnormalities of CKD-MBD. Although no clinical trials have examined the impact of lowering serum phosphorus or PTH on mortality, the confluence of observational data created a market that was ready for the emergence of new pharmaceutical products that could lower serum phosphorus and PTH without raising serum calcium, including sevelamer-hydrochloride (Renagel; Genzyme, Cambridge, MA) as the first Food and Drug Administration (FDA)-approved noncalcium nonaluminum binder (27) and the newer generations of active vitamin D with less prominent calcemic effects, such as paricalcitol (Zemplar; Abbott Laboratories, Abbott Park, IL), doxercalciferol (Hectorol; Genzyme) (28), and maxacalcitol (29) (Figure 1). Hence, a relentless fight against calcium as the newest member of the “axis of evil” (hypercalcemia, hyperphosphatemia, and hyperparathyroidism) ensued, with a unified tone from several major pharmaceutical companies. The anticalcemic side of the battle front was further strengthened with the FDA's approval of the first calcium-sensing receptor agonist, cinacalcet (Sensipar; Amgen, Thousand Oaks, CA) (30).

On the weaker side of the battlefield were the manufacturers of the traditional calcium-based binders such as calcium acetate (Phoslo; Fresenius Medical Care North America, Walnut Creek, CA), who had to defend themselves against the anticalcium alliance. Some traditionalists did not find the emerging data adequately convincing to give up their two-decade-old calcium-based paradigm at such a high speed (31). Calcium loyalists and their pharmaceutical supporters also intensified their defensive efforts and sponsored their own studies to show that the good old (and, by the way, inexpensive) calcium-based binders are still worthy of consideration (32,33). Fuel has been added to this fire by the inability of the Dialysis Clinical Outcomes Revisited (DCOR) study and of a meta-analysis to demonstrate a survival advantage with sevelamer hydrochloride over calcium-based binders (34,35) and by preliminary data from the Calcium Acetate Renagel Evaluation-2 (CARE-2) study suggesting that the benefit of sevelamer hydrochloride over calcium-containing binders may be related to its lowering of cholesterol and not the calcium load from the latter (36). A recent small, randomized, controlled trial (RCT) in patients who had CKD and were not yet on dialysis also indicated that coronary artery calcification in patients who were treated with calcium carbonate showed progression that was identical to that of untreated patients, hence questioning the role of calcium intake in the calcification process; the most favorable outcome was nevertheless seen in the group that was treated with sevelamer hydrochloride (which showed no progression of calcification), even without significant changes in blood lipid levels (37). The mixed results from these RCT suggest that the question of what the ideal amount of calcium intake might be is far from settled. Calcium mass balance studies are missing in contemporary dialysis patients; short of such studies, it is very difficult to make assertions about what “too much” or “too little” calcium intake means. The route of intake may be another important question, given that any proposed detriment of calcium intake may to some extent be counterbalanced by the benefits of phosphate lowering with oral intake but not with parenteral administration (such as with dialysate).

During this current phase of the battle, several competing pharmaceutical industry–sponsored studies have presented results that supported the arguments presented by the relevant manufacturer (32,36,3840). The battle became ferocious with opposing mass flyers and letters to nephrologists by competing companies discrediting each other's data, especially during the period after the public release of the main results of the DCOR trial (34). These activities instigated an increasing degree of confusion among both patients with CKD and nephrologists, who were sometimes not sure how to translate all of the data into clinical practice. Nevertheless, the new anticalcemic paradigm seemed to become the dominating trend, enjoying the blessings of the first Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines on bone and mineral metabolism in 2003, and has had a major impact on our current practice pattern (25).

Confounded Battle Ground

Recently, the once focused and straightforward war against calcium has become confounded as several other pharmaceutical products have found their way into the CKD market. On the binder front, newer non–calcium-based binders have been approved or are awaiting approval, such as lanthanum carbonate (Fosrenol; Shire Pharmaceuticals, Hampshire, UK) (41) or other metal-based products (42) (Figure 1). This has opened up new battle fronts among the noncalcium binders themselves, shifting the debate toward issues such as the long-term safety of lanthanum carbonate (43) or the worsening acidemia seen with sevelamer hydrochloride (44). Efforts are under way to obtain FDA approval for sevelamer carbonate (Renvela; Genzyme). Additional binders with diverse features are expected to come out of the pipeline in the near future (Figure 1).

On the vitamin D front, the arrival of doxercalciferol (Hectorol) (45) to the US market has disrupted the previously focused message that the third-generation active vitamin D paricalcitol is the best of all. A somewhat artificial debate ensued about doxercalciferol's belonging to an evolved generation of “active” vitamin D compounds surpassing calcitriol versus its being a mere prohormone below its rank; this has bred more confusion among the rank-and-file nephrologists and dietitians. The battle has become even more complicated as the calcium-sensing receptor agonist cinacalcet (Sensipar) has emerged as a promising alternative therapy for SHPT (30). Hence, the once unified anticalcium alliance seems to be suffering from infighting among its own members.

Several recent observational studies have shown that the administration of any dosage of any active vitamin D is associated with significantly better survival independent of the level of calcium, phosphorus, or PTH; these studies, in turn, might have de-emphasized the dangers of calcium loading (3,46,47). As part of the same trend, more recent epidemiologic analyses have reopened the question regarding the optimal range of serum calcium (3). Moreover, studies in non–dialysis-dependent patients with CKD have found that vascular calcification may be independent of high serum calcium level (20,2224). Clearly, there is also evidence to implicate hypercalcemia and calcium intake in coronary calcification (1719,37), and the previously mentioned studies merely complement the picture of a complex disease, yet it is still very common to see only one side of the story included in presentations dealing with the consequences of CKD-MBD, and it is easy to see how this would breed confusion or resentment in the audience.

What to Do Next?

That the field of CKD-MBD has become a complicated battleground in the past few years cannot be denied. That the pharmaceutical sector cherry-picks from emerging data also should not surprise nephrologists. The paucity of clinical trials in this field will unfortunately allow an ongoing emphasis on studies using observational designs or surrogate end points. Because none of these offers answers that are regarded as final, we will likely see a continuation of the current style of debate. To make matters more complicated, it is widely alleged that financial conflicts of interest have cast a shadow on expert recommendations; this will likely remain a lingering problem that could offer ways to try to discredit otherwise scientifically sound opinions or research findings (48). This has culminated in a recent series of open debates about the National Kidney Foundation's (NKF) K/DOQI guidelines, where the independence from pharmaceutical influence of the process and even the experts involved in the process were questioned (48,49). The substantial involvement by pharmaceutical companies in the funding process makes it conceivable that similar criticism will continue to be leveled at future revised CKD-MBD guidelines from the NKF or the Kidney Disease: Improving Global Outcomes (KDIGO) (1,25).

So what is the best course of action for the management of CKD-MBD? There is no clear answer to this question. In a perfect world, we could be devoid of pharmaceutical bias by having independently sponsored RCT examining hard end points related to all of the potential interventions to establish the best treatment strategy. Unfortunately, this head-to-head comparison of the numerous management strategies is unlikely to happen in the near future. On the bright side, the various abnormalities characterizing CKD-MBD are treatable, and there is an ever-growing armamentarium available to us to facilitate these treatments (Figure 1). There are still a number of questions that will have to be answered in order for us to have a clear understanding of what the end points of therapy should be and what the best treatment regimens are (Table 1).

Finally, is there a viable solution to the problems that we mentioned? The first step toward a solution is to synthesize what we know and, even more important, to recognize the deficiencies in our knowledge (Table 1). The treatments that we prescribe are borne out of a desire to do what is best for our patients and are based on our knowledge of medicine. Many of the questions that we face when treating CKD-MBD will never have definitive answers (defined as proof through RCT), but this is not a reason for therapeutic nihilism. Knowledge can be meaningful even without RCT and should allow for sound decision-making with an eye toward the patient's best interest. We need to use the limitations in our knowledge to limit the scope of our decision-making to the extent that we follow first and foremost the basic principle of “do no harm.” Thus, our opinion is that the solution to the listed problems is not a straightforward clinical practice guideline but rather the more universal principles of conscientiousness and studiousness. As far as studiousness is concerned, we recognize the everyday pressures that busy clinicians face, which makes in-depth studying of the many fields of nephrology on an ongoing basis a daunting task. Thus, from a practical standpoint, the NKF-sponsored K/DOQI and the upcoming KDIGO guidelines on CKD-MBD may probably be the best tools available as long as the practitioners understand the many areas of uncertainty and controversy. Discrediting these guidelines in their entirety because of their funding by the pharmaceutical industry may be unfair and inappropriate. However, the proponents of clinical practice guidelines also need to acknowledge that collaboration with the pharmaceutical sector has undeniably become the Achilles heel of these processes. A balanced, transparent, and hands-off collaboration wherein industry supports the process rather than the specific set of guidelines that involve their products may diminish the perception of conflict of interest.


C.P.K. has received honoraria from Genzyme, Inc., the manufacturer of Sevelamer hydrochloride (Renagel), and from Amgen, Inc., the manufacturer of cinacalcet hydrochloride (Sensipar), and has received grant support from Abbott laboratories, the manufacturer of Paricalcitol (Zemplar). R.M. has received honoraria and grants from Genzyme, Inc., and has received grants and honoraria from and serves as a consultant for Shire Pharmaceuticals, the manufacturer of lanthanum carbonate (Fosrenol). K.K.-Z. has received honoraria or grants from Genzyme, Inc., Shire Pharmaceuticals, and Abbott Laboratories.

Figure 1:
Timeline of various treatments for mineral and bone disorders in chronic kidney disease (CKD-MBD).
Table 1:
Fundamental questions to be answered in CKD-MBDa

Published online ahead of print. Publication date available at


1. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G: Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int69 :1945– 1953,2006
2. Kalpakian MA, Mehrotra R: Vascular calcification and disordered mineral metabolism in dialysis patients. Semin Dial20 :139– 143,2007
3. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD: Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int70 :771– 780,2006
4. Bricker NS: On the pathogenesis of the uremic state: An exposition of the “trade-off hypothesis.” N Engl J Med286 :1093– 1099,1972
5. Delmez JA, Tindira C, Grooms P, Dusso A, Windus DW, Slatopolsky E: Parathyroid hormone suppression by intravenous 1,25-dihydroxyvitamin D: A role for increased sensitivity to calcium. J Clin Invest83 :1349– 1355,1989
    6. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, Andress DL: Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int71 :31– 38,2007
      7. Pitts TO, Piraino BH, Mitro R, Chen TC, Segre GV, Greenberg A, Puschett JB: Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab67 :876– 881,1988
        8. Llach F, Massry SG: On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab61 :601– 606,1985
        9. Baker LR, Abrams L, Roe CJ, Faugere MC, Fanti P, Subayti Y, Malluche HH: 1,25(OH)2D3 administration in moderate renal failure: A prospective double-blind trial. Kidney Int35 :661– 669,1989
        10. Bianchi ML, Colantonio G, Campanini F, Rossi R, Valenti G, Ortolani S, Buccianti G: Calcitriol and calcium carbonate therapy in early chronic renal failure. Nephrol Dial Transplant9 :1595– 1599,1994
          11. Goodman WG, Coburn JW: The use of 1,25-dihydroxyvitamin D3 in early renal failure. Annu Rev Med43 :227– 237,1992
          12. Salusky IB, Foley J, Nelson P, Goodman WG: Aluminum accumulation during treatment with aluminum hydroxide and dialysis in children and young adults with chronic renal disease. N Engl J Med324 :527– 531,1991
          13. Thurston H, Swales JD: Aluminium and chronic renal failure. BMJ4 :490– 531,1971
          14. Slatopolsky E, Weerts C, Lopez-Hilker S, Norwood K, Zink M, Windus D, Delmez J: Calcium carbonate as a phosphate binder in patients with chronic renal failure undergoing dialysis. N Engl J Med315 :157– 161,1986
          15. Malluche HH, Monier-Faugere MC: Risk of adynamic bone disease in dialyzed patients. Kidney Int Suppl38 :S62– S67,1992
          16. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC: Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis27 :394– 401,1996
          17. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB: Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med342 :1478– 1483,2000
          18. Guerin AP, London GM, Marchais SJ, Metivier F: Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant15 :1014– 1021,2000
            19. London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H: Arterial media calcification in end-stage renal disease: Impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant18 :1731– 1740,2003
            20. Mehrotra R, Budoff M, Christenson P, Ipp E, Takasu J, Gupta A, Norris K, Adler S: Determinants of coronary artery calcification in diabetics with and without nephropathy. Kidney Int66 :2022– 2031,2004
            21. Mehrotra R, Budoff M, Hokanson JE, Ipp E, Takasu J, Adler S: Progression of coronary artery calcification in diabetics with and without chronic kidney disease. Kidney Int68 :1258– 1266,2005
              22. Qunibi WY, Abouzahr F, Mizani MR, Nolan CR, Arya R, Hunt KJ: Cardiovascular calcification in Hispanic Americans (HA) with chronic kidney disease (CKD) due to type 2 diabetes. Kidney Int68 :271– 277,2005
              23. Russo D, Palmiero G, De Blasio AP, Balletta MM, Andreucci VE: Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis44 :1024– 1030,2004
                24. Tomiyama C, Higa A, Dalboni MA, Cendoroglo M, Draibe SA, Cuppari L, Carvalho AB, Neto EM, Canziani ME: The impact of traditional and non-traditional risk factors on coronary calcification in pre-dialysis patients. Nephrol Dial Transplant21 :2464– 2471,2006
                25. Eknoyan G, Levin A, Levin N: Bone metabolism and disease in chronic kidney disease. Am J Kidney Dis42 :1– 201,2003
                26. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM: Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol15 :2208– 2218,2004
                27. Chertow GM, Burke SK, Lazarus JM, Stenzel KH, Wombolt D, Goldberg D, Bonventre JV, Slatopolsky E: Poly[allylamine hydrochloride] (RenaGel): A noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure. Am J Kidney Dis29 :66– 71,1997
                28. Martin KJ, Gonzalez EA, Gellens M, Hamm LL, Abboud H, Lindberg J: 19-Nor-1-alpha-25-dihydroxyvitamin D2 (Paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol9 :1427– 1432,1998
                29. Kazama JJ, Maruyama H, Narita I, Gejyo F: Maxacalcitol is a possible less phosphatemic vitamin D analog. Ther Apher Dial9 :352– 354,2005
                30. Goodman WG, Hladik GA, Turner SA, Blaisdell PW, Goodkin DA, Liu W, Barri YM, Cohen RM, Coburn JW: The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol13 :1017– 1024,2002
                31. Friedman EA: Calcium-based phosphate binders are appropriate in chronic renal failure. Clin J Am Soc Nephrol1 :704– 709,2006
                32. Qunibi WY, Hootkins RE, McDowell LL, Meyer MS, Simon M, Garza RO, Pelham RW, Cleveland MV, Muenz LR, He DY, Nolan CR: Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study). Kidney Int65 :1914– 1926,2004
                33. Qunibi WY: The CARE study and cardiovascular calcification. Manag Care15 :1– 5,2006
                34. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L, Ling BN, Chasan-Taber S, Dillon MA, Blair AT, Burke SK: Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int72 :1130– 1137,2007
                35. Tonelli M, Wiebe N, Culleton B, Lee H, Klarenbach S, Shrive F, Manns B, for the Alberta Kidney Disease Network: Systematic review of the clinical efficacy and safety of sevelamer in dialysis patients. Nephrol Dial Transplant22 :2856– 2866,2007
                36. Qunibi WY, Moustafa M, Kessler P, Muenz LR, Budoff M: Coronary artery calcification (CAC) in hemodialysis patients (HDP): Preliminary results from the Calcium Acetate Renagel Evaluation-2 (CARE-2) Study [Abstract]. J Am Soc Nephrol286A– 287A,17 :2006
                37. Russo D, Miranda I, Ruocco C, Battaglia Y, Buonanno E, Manzi S, Russo L, Scafarto A, Andreucci VE: The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int72 :1255– 1261,2007
                38. Chertow GM, Burke SK, Raggi P: Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int62 :245– 252,2002
                39. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, Raggi P: Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int68 :1815– 1824,2005
                  40. Block GA, Raggi P, Bellasi A, Kooienga L, Spiegel DM: Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int71 :438– 441,2007
                  41. Joy MS, Finn WF: Randomized, double-blind, placebo-controlled, dose-titration, phase III study assessing the efficacy and tolerability of lanthanum carbonate: A new phosphate binder for the treatment of hyperphosphatemia. Am J Kidney Dis42 :96– 107,2003
                  42. Zhu H, Webb M, Buckley J, Roberts NB: Different Mg to Fe ratios in the mixed metal MgFe hydroxy-carbonate compounds and the effect on phosphate binding compared with established phosphate binders. J Pharm Sci91 :53– 66,2002
                  43. Lacour B, Lucas A, Auchere D, Ruellan N, de Serre Patey NM, Drueke TB: Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int67 :1062– 1069,2005
                  44. Brezina B, Qunibi WY, Nolan CR: Acid loading during treatment with sevelamer hydrochloride: Mechanisms and clinical implications. Kidney Int66 :S39– S45,2004
                  45. Frazao JM, Chesney RW, Coburn JW: Intermittent oral 1alpha-hydroxyvitamin D2 is effective and safe for the suppression of secondary hyperparathyroidism in haemodialysis patients. 1alphaD2 Study Group. Nephrol Dial Transplant13[Suppl 3] :68– 72,1998
                  46. Teng M, Wolf M, Ofsthun MN, Lazarus JM, Hernan MA, Camargo CA, Jr., Thadhani R: Activated injectable vitamin D and hemodialysis survival: A historical cohort study. J Am Soc Nephrol16 :1115– 1125,2005
                  47. Tentori F, Hunt WC, Stidley CA, Rohrscheib MR, Bedrick EJ, Meyer KB, Johnson HK, Zager PG: Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int70 :1858– 1865,2006
                  48. Coyne DW: Influence of industry on renal guideline development. Clin J Am Soc Nephrol2 :3– 7,2007
                  49. Coyne DW: Practice recommendations based on low, very low, and missing evidence. Clin J Am Soc Nephrol2 :11– 12,2007
                  Copyright © 2008 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.