Institutional members access full text with Ovid®

Share this article on:

Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow

Nascimento Baez Garcia, Cristiane Sousa RT, PhD; Abreu, Soraia Carvalho RT; Lassance Soares, Roberta Marques; Mancilha Prota, Luiz Felipe RT, MSc; Figueira, Rogério Cruz MD; Morales, Marcelo Marcos MD, PhD; Capelozzi, Vera Luiza MD, PhD; Zin, Walter Araújo MD, PhD; Macedo Rocco, Patricia Rieken MD, PhD

doi: 10.1097/01.CCM.0000295309.69123.AE
Laboratory Investigations

Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals.

Design: Prospective, randomized, controlled experimental study.

Setting: University research laboratory.

Subjects: Thirty normal male Wistar rats (180–230 g).

Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V′) of 10 mL/s (F10) or high V′ of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V′ = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V′ = 10 mL/sec.

Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered.

Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.

From the Laboratory of Pulmonary Investigation (CSNBG, SCA, RCF, PRMR), Laboratory of Cellular and Molecular Physiology (RMLS, LFMP, MMM), and Laboratory of Respiration Physiology (WAZ), Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; and the Department of Pathology, University of Sao Paulo, Sao Paulo, SP, Brazil (VLC).

Supported, in part, by Centers of Excellence Program (PRONEX-FAPERJ), Brazilian Council for Scientific and Technological Development (CNPq), and Rio de Janeiro State Research Supporting Foundation (FAPERJ).

The authors have not disclosed any potential conflicts of interest.

Address requests for reprints to: Patricia Rieken Macedo Rocco, MD, PhD, Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21949-900, Rio de Janeiro, RJ, Brazil. E-mail:

© 2008 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins