Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes: Erratum : Journal of Cardiovascular Pharmacology

Journal Logo

Erratum

Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes: Erratum

Journal of Cardiovascular Pharmacology: November 2022 - Volume 80 - Issue 5 - p 753-754
doi: 10.1097/FJC.0000000000001378
  • Free

In the September, 2022 issue of the Journal of Cardiovascular Pharmacology in the article by Sandroni et al, “Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes,”1 the numbered list of references provided for Table 1 is incorrect.

Please see the revised table below with the corrected list of references.

Table 1. - Summary of Adrenergic Regulation of Mitochondrial Function in Cardiomyocytes
AR Model Intervention Effect Ref
Biogenesis β2 Mouse; heart Formoterol (100 µg/kg, 24 or 48 h) ↑ mtDNA
↑ PGC1α
69
β Mouse; adult rat cardiomyocytes Isoproterenol (100 nM, 12–48 h) No effect 70
β Mouse; heart Isoproterenol (15 mg/kg, 14 d) No effect 70
β2 Mouse; left ventricle Formoterol (0.3 mg/kg, 24 h) No effect 71
α1 Mouse; C2C12, HL-1 Midodrine (1–30 µM, 24 h) ↑ PGC1α expression 72
α1 Rat; heart Midodrine (0.3 mg/kg/d, 4 w) ↑ PGC1α 72
α1A Mice; heart Dabuzalgron (20 µg/kg/d, 7 d) ↑ PGC1α expression 73
Dynamics β Rat; H9c2 Isoproterenol (10 µM, 30 min) ‒ fission
↑ Drp1 activation
84
β Rat; H9c2 Isoproterenol (1 µM, 24 h) ↑ fission 70
β Mouse; HL-1 Isoproterenol (10 µM, 1 h) ↑ fission
↑ Drp1 translocation
85
β1* Mouse; HL-1 Isoproterenol (10 µM, 1 h) + CGP20712A (300 nM) ↓ fission 85
β2* Mouse; HL-1 Isoproterenol (10 µM, 1 h) + ICI 118,551 (300 nM) ↑ fission 85
β2* Mouse; heart β2 genetic deletion ↑ fission
↑ Drp1 translocation
85
All Rat; neonatal ventricular myocyte Norepinephrine (10 µM, 2–48 h) ↑ fission 93
α1* Rat; neonatal ventricular myocyte Norepinephrine (10 µM, 48 h) + Prazosin (1 µM) ↓ fission 93
α1 Rat; H9c2 Phenylephrine (10 µM, 30 min) ↑ fission
↑ Drp1 activation
84
Mitochondrial Calcium β Mouse; adult left ventricular myocytes Isoproterenol (500 nM, 5–20 min) ↑ mitochondrial calcium 86
β Rat; adult ventricular myocytes Isoproterenol (100 nM, 10 min) ↑ mitochondrial calcium 126
β Mouse; adult ventricular myocytes Isoproterenol (500 nM, 15 min) ↑ mitochondrial calcium 127
β1 Mouse; adult cardiomyocytes Dobutamine (32 ng/g/min, 30 min) ↑ mitochondrial calcium 131
α1 Rat; heart Methoxamine (10 µM, 2 min) ↑ mitochondrial calcium 134
α1 Rat; H9c2 Phenylephrine (100 µM, 120 s) ↑ mitochondrial calcium 137
α1 Rat; adult left ventricular myocytes Phenylephrine (10 µM, 30 min) ↓ mitochondrial calcium 145
α1B* Rat; adult left ventricular myocytes Phenylephrine (10 µM, 30 min) + CEC (1 mM) ↑ mitochondrial calcium 145
α1A* Rat; adult left ventricular myocytes Phenylephrine (10 µM, 30 min) + 5-MU (10 µM) ↑ mitochondrial calcium 145
OXPHOS All* Mouse; embryos AR genetic deletion ↓ ATP content
↓ ECA
↓ OCR
83
β Mouse; embryos AR genetic deletion + Isoproterenol (maternal, 0.2 mg/mL, 2–3 w) ↑ ATP content
↑ ECA
↑ OCR
83
α1 Mouse; embryos AR genetic deletion + Phenylephrine (maternal, 0.2 mg/mL, 3 w) ↑ ATP content
↑ ECA
↑ OCR
83
All Rat; adult cardiomyocytes Norepinephrine (1 µM, 5–120 min) ↑ superoxide production 154
β Mouse; HL-1 Isoproterenol (10 µM, 1 h) ↑ basal OCR
↑ maximal OCR
↑ ATP-linked OCR
↑ ATP production
85
β1* Mouse; HL-1 Isoproterenol (10 µM, 1 h) + GCP20712A (300 nM) ↓ basal OCR
↓ maximal OCR
↓ ATP-linked OCR
↓ ATP production
85
β Rat; H9c2 Isoproterenol (10 µM, 48 h) ↑ complex I activity 155
β Rabbit; cardiomyocytes Isoproterenol (0.1 µM, 15 min) ↓ redox potential
↓ superoxide production
160
β Mouse; left ventricular myocytes Isoproterenol (500 nM, 5–20 min) ↓ membrane potential
‒ superoxide production
‒ ATP production
127
β Mouse; neonatal mouse cardiomyocytes Isoproterenol (10 µM, 5–120 min) ↑ superoxide production
‒ NAD+/NADH ratio
135
β Rat; adult cardiomyocytes Isoproterenol (10 µM) ↑ complex V activity 162
β2* Mice; heart β2 genetic deletion ↓ complex I activity
↓ complex II activity
65
β2 Mouse; left ventricle Formoterol (0.3 mg/kg, 24 h) ↑ complex I abundance 71
β2 Mouse; heart β2 overexpression (200-fold) ↓ ATP production 8
β2* Mouse; HL-1 ICI 118, 551 (300 nM) ↑ basal OCR
↑ maximal OCR
↑ ATP-linked OCR
85
β2* Mouse; cardiomyocytes β2 genetic deletion ‒ OCR 85
β2 Mouse; heart Clenbuterol (1 mg/kg, 12 h) ↑ complex V activity
↑ ATP production
163
α1 Rat; H9c2 Phenylephrine (100 µM, 1 h) ↑ basal OCR
↑ maximal OCR
↑ ATP-linked OCR
↑ reserve capacity
↑ superoxide production
84
α1 Mouse; C2C12 Midodrine (30 µM, 24 h) ↑ OCR
↑ ATP content
↑ complex II activity
↑ complex IV density
72
α1 Rat; H9c2 Midodrine (30 µM, 24 h) ↑ OCR
↑ ATP production
72
α1A Mouse; heart Dabuzalgron (20 µg/kg/d, 7 d) ↑ ATP content
↑ complex I expression
↑ complex III expression
↑ complex V expression
73
α1A Rat; neonatal ventricular myocyte Dabuzalgron (10 µM, 24 h) ↑ membrane potential 73
Increases (↑), decreases (↓), or no significant effect (−) are listed. (*) denotes decreased adrenergic receptor (AR) activation due to genetic deletion or antagonist treatment. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) regulates mitochondrial protein transcription and mitochondrial DNA (mtDNA) replication required for mitochondrial biogenesis. Dynamin-related protein 1 (Drp1) regulates fission. Oxygen consumption rate (OCR) and extracellular acidification (ECA) are metrics for oxidative phosphorylation (OXPHOS).

REFERENCE

1. Sandroni PB, Fisher-Wellman KH, Jensen BC. Adrenergic receptor regulation of mitochondrial function in cardiomyocytes. J Cardiovasc Pharmacol. 2022;80:364–377.
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.