喉周通气道（CobraPLA™）：和喉罩（LMA™）同样有效且气道密闭压更高的装置

Ozan Akca, MD, Anupama Wadhwa, MD, Papiya Sengupta, MD, Jaleel Durrani, MD, Keith Hanni, MD, Mary Wenke, CRNA, Yüksel Yücel, MD, Rainer Lenhardt, MD, Anthony G. Doufas, MD, PhD, and Daniel I. Sessler, MD

OUTCOMES RESEARCH™ Institute and the Departments of Anesthesiology and Pharmacology, University of Louisville, Louisville, Kentucky

摘要 喉罩（LMA）是一种临床常用的有效气道装置。然而，有时可能会因为它密闭性欠佳而影响正压通气的效果。喉周通气道（CobraPLA）是一种带有较大气囊（当充气时）的新型气道装置。本研究旨在证明：在插入操作时间、气道密闭压、气道吻合程度和术后恢复方面，喉周通气道均优于喉罩。方法：81例ASA I - II级行择期手术的门诊病人在给予咪达唑仑和芬太尼后随机分为LMA组或CobraPLA组，给予异丙酚（2.5mg/kg，IV）行麻醉诱导后插入气道装置。我们测量的指标有：1）插入时间；2）气道吻合度（在气道峰压15cmH₂O或潮气量5ml/kg时无漏气）；3）气道密闭压；4）术中需要重新调整气道的次数；5）密封性能（在潮气量8ml/kg时无漏气）。结果：总体对患者胃胀气、术后咽痛、发声困难、吞咽困难等情况进行评价。采用非配对t检验、χ²检验或四格表确切概率法进行统计学处理，以P<0.05为差异有显著性。结论：两组病人一般情况、插入操作时间、气道吻合程度、调整次数和术后恢复指标均相同，CobraPLA组的气道密闭压（23±6cmH₂O）明显高于LMA组（18±5cmH₂O，P<0.001）。

Abstract The Laryngeal Mask Airway (LMA) is a frequently used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to the LMA with regard to insertion time and airway sealing pressure and comparable to the LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl administration, 81 ASA physical status I - II outpatients having elective surgery were randomized to receive a LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg IV), and the airway was inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15cmH₂O peak pressure or tidal volume of 5 mL/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 mL/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired Student’s t - tests, χ² tests, or Fisher’s exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6cmH₂O) than LMA (18±5cmH₂O, P<0.001). The CobraPLA has insertion characteristics similar to the LMA but better airway sealing capabilities.

(Anesth Analg 2004; 99: 272 - 8)
医师的气道管理方法。喉罩的最大优点是：即使对于气管插管和常规面罩给氧有困难的病人，也能保证气道通畅[5]。尽管喉罩能提供良好的通气，但是常规使用过程中尚存在一些问题，比如5% ~ 10%的病人需要多次尝试才能插入或反复调整位置[2,6]；当气道压超过15 ~ 20cmH₂O时常常引起漏气，从而影响正常的机械通气[7,8]。因此，当病人的气道压预期超过20cmH₂O时，不推荐使用喉罩[9]。对于这部分病人，一般推荐使用一种新的喉罩，ProSeal LMA（加强型喉罩）（喉罩公司生产）。ProSeal LMA所提供的气道密封压较一般喉罩高10cmH₂O，但更难以插入[10]。

口度便能插入，故喉周通气道较喉罩易于插入。

喉周通气道已经试用于塑料人体模型和健康志愿者（通过与喉周通气道的发明者David Altery联系得知）。然而，它的临床应用还未得到正式验证。本研究旨在证实喉周通气道在插入操作时间和气道密封压方面优于喉罩，而气道吻合程度和术后气道恢复正常方面也可以和喉罩相媲美。

方 法

本研究经Louisville大学伦理委员会许可，每个病人均签署知情同意书。所选病例ASAⅠ ~ Ⅱ级，年龄大于18岁，Mallampati 分级Ⅰ或Ⅱ级，开口度大于3cm，颏甲间距大于6cm，体重指数小于35kg/m²，择期行妇科、骨科或普通外科手术。排除喉罩使用禁忌症者或麻醉主治医师认为需要纤维支气管镜才能完成插管的病人。此外，有喉痛的既往史或现病史、胃食管返流性疾病、肺疾病、颈椎疾病、妊娠、发音困难和吞咽困难的病人也被排除。

本组实验研究者中，5人选为喉周通气道插入者（3名主治医师，1名进修医师，1名注册麻醉护士），这5人均有超过六年的临床麻醉和喉罩插入经验，且在研究开始前已接受不少于10次的喉周通气道插入训练。3名研究人员以非盲法收集术中数据，2名研究人员以盲法收集术后数据。

通过预试验估计本研究所需的样本量。预试验中两组40例患者的气道密封压均数差值约为5cmH₂O（标准差约7cmH₂O）。如果以P < 0.05 为差异有统计学意义，我们估算需要80例病人有90%的可能检验出组间5cmH₂O的气道密封压差异，以及有90%的可能性检验出20s的插入操作时间差异。

术前用药为芬太尼（1 ~ 2μg/kg）和咪达唑仑（1 ~ 2mg）。进行常规监测后，用单次静脉注射异丙酚（2 ~ 3mg/kg）行全身麻醉诱导。病人随机分为喉罩组和喉周通气道组。随机排列号由计算机自动生成，各数字序号装入一个不透明信封里。给每个实施操作的研究人员20个随机数信封，由他们根据患者出现的顺序自然随机选择病人。喉罩的大小根据体重大小按照说明书推荐的号码而定；在喉周通气道组，多数女性选用3号，多数男性选用4号（当时尚无5号）。因为随机数信封直到插入通气道前才打开，对每个病人均准备两种通气道（喉罩和喉周通气道）
气道）。通气道用水性润滑剂润滑。

注射异丙酚后约3秒，在眼睑反射消失和下颌松弛后开始第一次试插。此前给予4～5次潮气量为5～6ml/kg的人工通气。面罩通气期间应尽量避免引起胃胀气。插入通气道前不使用肌松剂。由另一名研究者用秒表计数插入所需时间。插入操作时间从通气道尖端接触上切牙开始，到与气道吻合良好为止。气道吻合良好指呼气末二氧化碳波形满意，潮气量大于5ml/kg（理想体重）或气道正压15cmH2O时无漏气。试插两次失败后如果病人通气尚好且肺搏氧饱和度大于95%，则插入另一种通气道，否则行气管内插管维持通气。两种通气道的气囊均充气到60cmH2O。气囊压力用低压检测仪(VBM, Sulz, Germany)监测。已经证实60cmH2O的气囊压对粘膜组织是安全的[1,12]。

以60%笑气、芬太尼（约100μg/h）和七氟醚维持麻醉（调整吸入浓度使平均动脉压维持在诱导前基础血压值的20%以内）。插入通气道后立即测量气道密闭压（方法如下所示）。对于估计麻醉时间不到1小时的病人，保留其自主呼吸，否则给予罗库溴铵（0.5mg/kg）并以潮气量为8ml/kg行机械通气，调整呼吸频率使呼气末二氧化碳分压维持于40mmHg左右。

在手术即将结束时对神经肌肉阻滞予以拮抗，测量胃胀气量。术毕停止麻醉，拔除通气道。之后立即用压舌板和手电筒观察口咽部情况，并记录所有严重损伤。

记录指标：病人的一般资料、气道分级、手术种类、病人体位、通气道型式、麻醉时间、肺搏氧气饱和度（SPo2）和呼气末二氧化碳浓度（ETCO2）。SPo2<90%为低氧血症，ETCO2>45mmHg为高碳酸血症。

用改良Mallampati法进行气道分级，要求病人坐直，充分张嘴，最大程度伸舌[13,14]。频甲间距测量方法如Tse等所述[15]：头最大程度伸直时甲状切迹至下颌前部的直线距离。

气道状况评价分三方面：插入、维持和恢复情况。插入指标包括插入时间、插入难易度、定位和气道吻合程度；维持指标包括密闭性和通气情况；恢复指标包括喉痛、发声困难和吞咽困难。

通气道插入时间用秒表计算，从该装置入口开始，到与气道良好吻合为止（如上所述）。记录试图插次数（1，2，或失败）及通气道的型号。当通气道到达最佳位置后，除非临床提示需要变换位置，否则不再改变位置。插入通气道后在齐门牙水平处作标记以测量插入深度，有效的插入深度为通气道尖端至标记点之距离。调整位置指的是为获得更好的气道密闭效果而将通气道在咽部移动但未将其拔出。如果麻醉医师发现喉痉挛，则由不了解分组情况的研究人员进一步确定并记录。

插入通气道后，关闭呼吸回路的呼吸活瓣并调节气流量为3L/min。当气压计指针到达平衡时，此时的气道压即气道密闭压。通气道插入后立即测定气道密闭压。

插入通气道并测定气道密闭压完毕后，以8ml/min的潮气量对病人进行机械通气2分钟（不管手术过程是否需要）。在此期间确定气道密闭性并予以分级如下：1）未发现漏气；2）轻度漏气（Vt损失<20%）；3）中度漏气（Vt损失20%～40%）；4）中度缺氧（Vt损失>40%）。Vt损失为吸气潮气量减去实际的呼出潮气量，根据Datex S/S™麻醉呼吸机（Datex-Ohmeda，麦迪逊公司生产）上的监护仪采集数据计算而得。只有气道密闭性测定完毕后才对需要使用肌松剂的病人用药。

对于研究后期35例病人这一亚组，当插入喉罩或喉罩通气道并对气囊充气时，在连续通气支持下，用可弯曲的纤维支气管镜（BF30，外径5.0mm，奥林巴斯，日本东京生产）通过半密封的隔膜行支气管镜检。通过面罩的内部视野用Brimacombe-Berry评分系统[17,18]对气道定性情况进行评分：4分=仅见声带；3分=可见声带和会厌后部；2分=可见声带和会厌前部；1分=看不见声带；0分=插入失败或位置不对。

在术毕拔除通气道之前，给气囊放气，插入一胃管（带反返流阀的18F Salem Sump管，Argyle®；Sherwood Medical，St，Louis，MO），记录已吸人胃内的空气量[19]。胃内残余气量>50ml认为具有临床意义。误吸的观察判断由麻醉主治医师评定。误吸的客观定义为拔除通气道后严重咳嗽和气道激惹。

术后1小时由不知情的研究人员用100mm视觉模拟量表（VAS）对患者喉痛、发声困难、吞咽困难进行评分。为了评估患者吞咽困难情况，给患者喝几口水。每位病人用一把未标记过的VAS尺评估。当患者吞咽时，询问其是否有刺痛、麻木或其他
口咽部异感。

我们的初级转归指标为气道密闭压（cmH₂O）和插入时间（s），其次是插入次数和调整次数，纤维光镜对解剖吻合度的评价，胃胀气，口咽部不适（包括喉痛、吞咽困难和发声困难）。

所有数据用正态分布检验、χ²检验、非配对t检验或非参数法t检验进行统计学处理。数据以均数±标准差或实际数值表示，对初级转归指标以P<0.05为差异有显著性，对次级转归指标以P<0.01为差异有显著性，较小的P值是对多数组配对数据比较的补偿。

结果

按照样本量估计结果，我们收集了80例病人。然而，在研究的最后一天有2个病人同时被不同的研究人员收集。因此，我们最后收集了81例病人。病例中男性多于女性，但是两组病例的一般情况无统计学差异（表1）。多数病人接受短小的骨科手术（如内固定物或螺丝/钢板取出术）和妇科手术。我们只收集Mallampati I级和II级的病例，但病例中有1例气道分级III级的患者无意中被随机收入喉罩组，该病人的研究结果和该组其他病例相似。

<table>
<thead>
<tr>
<th>表1 两组病人的一般资料</th>
<th>气道密闭压（n=40）</th>
<th>喉罩（n=41）</th>
</tr>
</thead>
<tbody>
<tr>
<td>年龄（岁）</td>
<td>35±14</td>
<td>35±11</td>
</tr>
<tr>
<td>身高（cm）</td>
<td>176±15</td>
<td>170±11</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>81±18</td>
<td>78±17</td>
</tr>
<tr>
<td>体重指数（kg/m²）</td>
<td>27±7</td>
<td>27±6</td>
</tr>
<tr>
<td>性别（男/女）</td>
<td>13/27</td>
<td>20/21</td>
</tr>
<tr>
<td>Mallampati分级（I/II/III）</td>
<td>24/14/0 *</td>
<td>22/18/1</td>
</tr>
<tr>
<td>手术种类（骨科/妇科/基本外科）</td>
<td>28/6/6</td>
<td>25/10/6</td>
</tr>
<tr>
<td>病人体位（仰位/侧位）</td>
<td>29/8 *</td>
<td>30/10 *</td>
</tr>
<tr>
<td>麻醉时间（min）</td>
<td>65±39</td>
<td>62±42</td>
</tr>
<tr>
<td>通气气道型号（3/4/5）</td>
<td>13/27/0</td>
<td>5/28/8</td>
</tr>
<tr>
<td>插入深度（cm）</td>
<td>15.4±0.8</td>
<td>15.6±0.7</td>
</tr>
</tbody>
</table>

数据以均数±标准差或例数表示，两组差异无统计学意义
* 遗失数据

总体来说，通气道都能成功插入，喉周通气道组成功率为39/40，喉罩组成功率为41/41。在喉周通气道组，有一例病人按随机抽取原则插入喉周通气道两次失败，然后改为插喉罩，试插两次仍未成功，于是主治医师决定行气管内插管。

喉周通气道组的气道密闭压（23 ± 6cmH₂O，范围8~36cmH₂O）高于喉罩组（18 ± 5 cmH₂O，范围8~32 cmH₂O）。然而，在插入时间、插入次数、气道密封性的临床评价方面两组无明显差异（表2）。最佳气道密闭性（1分，未发生漏气）在喉周通气道组为21/40，喉罩组为13/41（P=0.095）。将闭合性为1分和2分的患者共同评价时，两组结果却很接近（喉周通气道和喉罩组分别为28/40和26/41，P = 0.80）。

用纤维光镜对解剖吻合度评价结果显示，两组结果无明显差异。解剖吻合度评分喉周通气道组为3/4/5/5，喉罩组为5/4/6/3。在具有临床意义的气管内残气量（残气量大于50ml）方面，两组例数相当，前者6例，后者4例；而且气管内残气量都很少，无统计学差异，喉周通气道组为24 ± 34ml，喉罩组为26 ± 25ml。出现口咽部刺激症状的例数两组相当（表2）。喉周通气道组1例出现严重咳嗽，喉罩组1例出现呃逆。

讨论

本研究旨在证明喉周通气道通气效果和喉罩相似，又能提供更短的插入时间和更好的气道密封压。我们的结果证明：喉周通气道对气道的密闭性优于喉罩，但是插入情况在两组相似；此外，成功插入例数在两组接近，通气效果亦无明显差异，一次插入成功率两组相当。上述数据表明，喉周通气道和喉罩一样，在气管插管失败后可作为行之有效的抢救装置。然而，值得注意的是，大多数气管插管失败的原因是由于解剖结构异常，因此，不能用解剖结构相对正常患者的研究结果来预测困难插管的病人。

我们惊奇地发现，尽管研究人员有数年的喉罩插入经验，而在开始本研究前只练习插喉周通气道10多次，但是两者的插入成功率相当。有作者认为要熟练掌握喉罩插入技术需要数百次的反复练习才能提高[20]。
表2 主要转归指标

<table>
<thead>
<tr>
<th></th>
<th>喉周通气道</th>
<th>喉罩</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>插入</td>
<td>(n = 40)</td>
<td>(n = 41)</td>
<td></td>
</tr>
<tr>
<td>插入时间 - 第一次（s）</td>
<td>32 ± 14</td>
<td>30 ± 14</td>
<td>0.487</td>
</tr>
<tr>
<td>插入时间 - 所有次数（s）</td>
<td>38 ± 31</td>
<td>38 ± 34</td>
<td>0.994</td>
</tr>
<tr>
<td>试插（1/2/3）</td>
<td>37/2/1</td>
<td>38/3/0</td>
<td>0.833 **</td>
</tr>
<tr>
<td>调整（是/否）</td>
<td>7/33</td>
<td>4/37</td>
<td>0.488 **</td>
</tr>
<tr>
<td>喉痉挛（无/中度）</td>
<td>39/1</td>
<td>41/0</td>
<td>0.480 **</td>
</tr>
<tr>
<td>低氧血症（无/中度/重度）</td>
<td>39/0/0/1</td>
<td>40/1/0</td>
<td>0.733 **</td>
</tr>
<tr>
<td>维持</td>
<td>(n = 39)</td>
<td>(n = 41)</td>
<td></td>
</tr>
<tr>
<td>气道密闭压（cmH₂O）</td>
<td>23 ± 6</td>
<td>18 ± 5</td>
<td><0.001</td>
</tr>
<tr>
<td>密封压 ≥20cmH₂O（n）</td>
<td>29</td>
<td>15</td>
<td><0.001</td>
</tr>
<tr>
<td>密封性（1/2/3/4）</td>
<td>21/7/8/2</td>
<td>13/13/11/1 *</td>
<td>0.285</td>
</tr>
<tr>
<td>通气（控制/辅助/自主）</td>
<td>17/2/20</td>
<td>18/1/19 *</td>
<td>1.000 **</td>
</tr>
<tr>
<td>解剖适合度（4/3/2/1）</td>
<td>3/4/5/5</td>
<td>5/4/6/3</td>
<td>0.881</td>
</tr>
<tr>
<td>高碳酸血症（无/轻度/中度）</td>
<td>36/1/1</td>
<td>39/1/0</td>
<td>0.740</td>
</tr>
<tr>
<td>胃胀气（无/轻度）</td>
<td>39/0</td>
<td>40/1</td>
<td>1.000 **</td>
</tr>
</tbody>
</table>

拔除和气道复原

带血（是/否） | 19/19 * | 14/22 * | 0.360 |
胃胀气（ml） | 25 ± 40 | 26 ± 25 | 0.522 ** |
喉痛 VAS >10mm（是/否） | 16/23 | 9/31 | 0.077 |
发声困难 VAS >10mm（是/否） | 7/32 | 5/35 | 0.500 |
吞咽困难 VAS >10mm（是/否） | 8/31 | 6/33 * | 0.555 |

VAS = 视觉模拟量表（0mm = 无痛；100mm = 损伤中重度疼痛）
密封性：1 = 未发现漏气；2 = 轻度漏气（VT 损失 ≤ 20%）；3 = 中度漏气（VT 损失 20% ~ 40%）；4 = 密封性差（VT 损失 > 40%）。
胃胀气数据来自机械通气患者

数据以均数 ± 标准差或例数表示
* 遗失数据，P 值计算方法有非对双尾 t 检验，t 检验，** 二分表确切概率法，*** Wilcoxon 秩和检验

在我们的初级转归和次级转归指标中，仅有一个差异有统计学意义，即气道密闭压。使用喉周通气道时，气道密闭压是 23 ± 6 cmH₂O，大约比喉罩高 5 cmH₂O。此差异有重要的临床意义：因为通常机械通气所需的气道压约 20 cmH₂O，而且喉罩制造公司建议使用气道峰压小于 20 cmH₂O 的通气模式[8]。因此，尽管我们所研究的短期择期手术病例无显著性差异，但对于复杂手术行机械通气时，使用喉周通气道有可能比用喉罩好。值得注意的是，目前有一种密封性更好的喉罩，称之为加强型喉罩（ProSeal LMA），能提供比喉罩大 10 cmH₂O 的气道密闭压[10]。但是，由于它的前端前后径较普通喉罩大，所以插入时较为困难。

喉周通气道因为前端有一较大的椭圆形气囊能够轻易地覆盖邻近咽组织，所以能提高其密封性能。与此相似，喉管通气道（laryngeal tube airway）也是因为有较大气囊而可提供比喉罩更大的气道密闭压[21]。良好的解剖学定位加上硕大的气囊足以覆盖喉周组
织，使喉周通气道成为一种密闭性良好的通气道。

任何新的药物或装置其有效性只体现其价值的一半，更重要的是其安全性。喉周通气道因为前端有较大的气囊从而提高了气道密封压，但也极易造成气体入胃，因此在特别注意胃胀气。然而，有临床意义的胃胀气病例数在两组相当，而且胃内气体量较少，两组无显著性差异。因此，我们得出的结论是：在我们的研究条件下，即使在大约一半病人使用机械通气，不论用哪一种通气道，胃胀气都不是严重的问题。然而，我们仅在术毕测量一次胃胀气。如果我们在整个手术过程中连续监测胃胀气，那么所得的结果可能会更准确。当然，这样做将会干扰气道密闭压的测量。

咳嗽和呃逆是位于声门上通气道的口咽部激惹症状。本研究中喉周通气道组仅有一例在拔除时出现咳嗽，喉罩组也只有一例在辅助通气时出现呃逆。通气道上带血情况两种装置相似，但多于以前的多数报道。其原因可能是插入胃管（经口）测量胃胀气损伤了上呼吸道。气道复原性方面两种装置类似，而且这两种装置似乎与喉痛、发声困难、吞咽困难均无明显关系。

合适的解剖学位置是通气道发挥最佳通气效果的必备条件。纤维镜检查表明，两种通气道定位相似，与两者具有相似的插入成功率相吻合。解剖学定位也有助于预测气道是否可通过纤维镜辅助插管。通过喉罩可行气管插管，实际上有一种专门用于辅助插管的喉罩通气道。更重要的是，喉罩在美国麻醉协会所规定的困难插管处理流程中占举足轻重的地位。喉周通气道也可辅助纤维镜行气管插管，3号喉周通气道能使6.5号气管内导管通过，4号则可以通过8号气管内导管。喉周通气道管腔较普通的喉罩大，因此能允许更大的气管内导管通过。虽然我们的纤维镜定位数据表明，通过喉周通气道行气管插管和通过喉罩行气管插管一样容易，但本研究并没有对这进行评价。

Brimacombe 等研究指出，90% 病人的粘膜在平均压达到 80cmH2O 时出现血管完全塌陷和粘膜灌注受挤，使粘膜压低至 34cmH2O 还会出现血管内径变小。喉罩制造商建议保持气囊压低于 60cmH2O。我们的预实验时采用此建议，但在低压情况下密闭性能差，因此，我们的研究中选择了 60cmH2O 的气囊压。

本研究不足之处是行通气道插人的研究人员不能采用盲法。然而，我们有理由保证这 5 位富有经验的临床医生无论插入哪一种通气道时都能倾尽全力。有趣的是，这两种装置唯一有显著性差异的是气道密闭压。而该指标是客观的，不受研究人员主观性的影响。术后观察指标如喉痛等，采用盲法设计，从而也避免了研究人员的主观因素。因此，没有理由认为未采用完全双盲法研究会影响我们的结果。

综上所述，喉周通气道与喉罩一样，是一种有效的气道装置。在插入时间、插入成功率、术后结果等方面两者无明显差异。然而，前者气道密闭压明显大于后者，两者分别为 23 ± 6 cmH2O 和 18 ± 5cmH2O。虽然气道密闭性的评估时限只是插入气道的即刻，但就有利于机械通气这一点而言，喉周通气道或许是这两者中的最佳选择。

作者感谢 Louisville 大学麻醉科 Edwin Liem，MD，Rachel Sheppard，CRCA，Diane Delong，RN，William Smith，CRNA，Beth Adkins，CRNA 给予的帮助，也感谢 Nancy Alsip，PhD 在撰写方面、Gilbert Haugh，MS 在统计学方面给予的帮助。

（皮治兵 译 蒋宗滨 校）

参考文献

2. Brimacombe J. Analysis of 1500 laryngeal mask uses by one anaesthetist in adults undergoing routine anaesthesia. Anaesthesia 1996：51：76 － 80．
3. Verghese C，Brimacombe JR. Survey of laryngeal mask airway usage in 11，910 patients：safety and efficacy for conven-