多巴胺在现代 ICU 中还有地位吗?

Yves A. Debaveye, MD, and Greet H. Van den Berghe, MD, PhD

Department of Intensive Care Medicine, Catholic University of Leuven, Leuven, Belgium

摘要 多年来，因多巴胺（dopamine，DA）的心血管效应，更因人们相信其具有保护肾脏功能和改善内脏粘膜灌注的作用，使其在 ICU 中一直作为基本药物使用。现在，已有大量的科学证据显示，小剂量 DA 对预防和治疗急性肾功能衰竭（ARF）和保护胃肠功能并非有效。直至不久前，人们仍认为小剂量 DA 几乎没什么副作用。但现在已经明确小剂量 DA 除了缺乏预期的内脏器官保护作用，在正常血容量和低血容量病人心可引起肾衰，因而可能是有害的。而且，DA 还可通过减少粘膜血流和抑制胃肠运动功能对内脏器官功能造成损害。DA 也可能抑制垂体前叶激素的分泌和作用，由此导致分解代谢加重、细胞免疫功能不全以及中枢性的甲状腺功能减退。此外，由于 DA 可以降低呼吸内阻力的作用，增加了撤离呼吸机病人发生呼衰的危险。因此，我们认为小剂量 DA 在 ICU 中已不再有位置，鉴于副作用，其作为升压药的价值也受到质疑。

Abstract For many years, dopamine was considered an essential drug in the intensive care unit (ICU) for its cardiovascular effects and, even more, for its supposedly protective effects on renal function and splanchnic mucosal perfusion. There is now ample scientific evidence that low-dose dopamine is ineffective for prevention and treatment of acute renal failure and for protection of the gut. Until recently, low-dose dopamine was considered to be relatively free of side effects. However, it is now clear that low-dose dopamine, besides not achieving the preset goal of organ protection, may also be deleterious because it can induce renal failure in normo-and hypovolemic patients. Furthermore, dopamine may cause harm by impairing mucosal blood flow and by aggravating reduced gastric motility. Dopamine also suppresses the secretion and function of anterior pituitary hormones, thereby aggravating catabolism and cellular immune dysfunction and inducing central hypothyroidism. In addition, dopamine blunts the ventilatory drive, increasing the risk of respiratory failure in patients who are being weaned from mechanical ventilation. We conclude that there is no longer a place for low-dose dopamine in the ICU and that, in view of its side effects, its extended use as a vasopressor may also be questioned.

这种传统观点不断受到质疑，有关其副作用的报道也日渐增多。由此引发了 DA 在现代 ICU 中对危重病人是否仍有应用价值的争论。

本文将根据 DA 对几个器官系统的效应，对有关支持和反对其应用的相关文献进行讨论。此外，还将对其作为升压药应用的科学性加以评价。

DA 对肾脏的影响

二十多年来，人们一直认为小剂量 DA 具有肾脏保护作用，从而在世界范围内得到广泛应用。给健康新鲜动物或人输注小剂量 DA 可引起肾血管扩张，伴有剂型依赖性的肾血流量增加和利尿作用[4]。而且，在健康志愿者，DA 可减弱去甲肾上腺素引起的肾血管收缩效应[5,6]。DA 产生这些作用的机制因剂型不同而异。以 0.5−3 μg/(kg min) 速率输注，主要通过激动肾血管系统的 DA-1 受体增加肾血流量[7]，可能还涉及到激动神经末梢的突触前 DA-2 受体，由此抑制去甲肾上腺素的释放[7]。大剂量 DA 引起的肾血流量增加主要是通过激动 β-肾上腺素能受体使心输出量增加所致。

此外，DA 可直接作用于肾小管引起排钠利尿作用，其机制为 DA 与远曲小管、髓样升支粗段和皮质集合管上的 DA-1 和 DA-2 受体结合，抑制 Na⁺-K⁺-ATP 酶活性而发挥利尿作用[8]。而且，DA 还可直接作用于髓质区集合管上的 DA-2 受体，刺激前列腺素 E2（PGE2）的生成，后者可拮抗抗利尿激素的作用，导致自由水排出增加[9]。

小剂量 DA 可使肾血流重新分布，皮质血流量增加[7]，而 PGE2 则主要增加髓质区血流。因此，小剂量 DA 可引起血供从外髓区分流，这一作用在急性肾衰（ARF）时有潜在的危险，尤其是外髓区代谢高度活跃，对缺血性损害尤为敏感[10,11]。

基于 Goldberg 的前瞻性研究[1]，人们一直认为在 ARF 前期和 ARF 时应用小剂量 DA 是一种合理的选择。但是，当时并无临床研究显示小剂量 DA 对危重病人的肾功能也具保护作用。而且，尽管小剂量 DA 可选择性地增加健康志愿者的肾血流[4]，但不能就此推断其对危重病人也具有同样的效应。

已有临床研究针对小剂量 DA 在防止易患病人发生 ARF 以及治疗 ARF 方面的应用进行了探讨。一些研究认为小剂量 DA 可增加尿量[12-17]，而另一些研究则认为没有此效应[18-20]。DA 的肾脏效应也随着肾功能损害程度的增加逐渐降低，当肾小球滤过率小于 50ml/(min 1.73m²) 时，这一作用消失[21]。一项研究结果显示小剂量 DA 可损害肾小管功能，因其可增加对代谢生成的尿(合)结合蛋白的分泌[18]。在 ICU 中，这些研究结果的差异可能与受试对象的不均一性、DA 的剂量、用药时机及用药条件等有关。

影响结果的因素可能还与研究设计有关，如缺乏对照组、样本量偏小以及具体条件影响统计分析和结论。DA 的利尿作用并不能确定其肾功能保护作用，因为尿量增加并不与肾功能的改善绝对相关[16,17]。ARF 的主要原因是肾脏的低灌注，所以，在低血容量或正常血容量的病人，增加尿量有导致肾衰的危险[20,22]。虽然有少数个研究认为小剂量 DA 在不损害全身血流动力学的情况下直接影响肾功能，但它们多数未测定心输出量。最近，比较公认的观点是小剂量 DA 的利尿作用是由心输出量增加所致而并非对肾脏的直接作用[14,15,22]。

目前不仅缺乏 DA 保护危重病人肾脏功能的证据，而且也缺乏其改善生存的证据。由澳大利亚和新西兰危重病学会联合进行的一项大规模研究表明，小剂量 DA 既不能阻止或逆转 ARF，也不能改善其预后[23]。这是第一项探讨小剂量 DA[2μg/(kg min)]对伴有炎性反应综合征和早期肾功能不全危重病人疗效的大规模、前瞻性、随机、双盲和安慰剂对照的临床研究，在 324 名病人中，未发现死亡率、需要肾移植的几率、肾功能恢复情况和血清肌酐峰值度有任何差异[23]（图 1）。

该项研究也证实了 2 个回顾性分析的结果。对北美败血症性休克 II 期临床试验（NORASEPT）的回顾性分析发现，伴有少尿的败血症性休克的病人，小剂量 DA 并不能减少 ARF 的发生率、血液透析的需求率或 28 天的病死率[24]。另一个类似分析结论源自 Auriculin Anaktide 研究小组对 ARF 的安慰剂对照研究，也未能发现小剂量 DA 对改善 ARF 病人的生存率和减少血液透析需求方面有积极的作用[25]。此外，最近发表了 2 个有关小剂量 DA 对 ARF 影响的荟萃分析。在第一项荟萃分析中，Kellum 和 Decker 对 58 个研究进行了分析，受试者累计达 2149 例，发
图1　小剂量多巴胺对伴有早期肾功能不全危重病人的作用（源自大规模、随机、对照研究结果）。Kaplan–Meier曲线显示了停止使用试验药物后肾功能恢复正常所需时间

现小剂量DA并不能降低病死率、ARF或血液透析的需求[26]。在第二份报告中，Marik对51例关于小剂量DA预防或治疗ARF的随机、安慰剂对照研究进行总结，同样未能发现其对血浆肌酐浓度的绝对变化和ARF发生率方面有无任何改善作用[27]。

综上所述，我们可以得出这样的结论：小剂量DA虽然可增加危重病人的尿量，但它不能预防或改善ARF。对低血容量或正常血容量的ARF病人，小剂量DA的利尿作用甚至是有害的。

DA对内脏灌注的影响

休克期间，肠道对缺血尤为敏感，肠粘膜屏障的破坏在多器官功能衰竭的发生发展中起重要作用[30]。理论上，小剂量DA可通过激动内脏器官上的DA受体使其血流增加，然而，缺乏科学证据。

在动物实验模型中，DA可以增加内脏和肝脏血流[31, 32]。但这并不总是伴有粘膜灌注的改善[32]。在狗，小剂量DA可以减少小肠的氧摄取和粘膜血供[32]；在猪的失血性休克模型中，小剂量DA可以加速肠道缺血的发生[33]。输注DA引起的肠道氧摄取降低可能与血流在肠道的重新分布使粘膜面血流减少有关[12, 33]。然而，在其他一些动物模型中，小剂量DA则可改善肠道氧摄取和粘膜血供[31, 35, 36]。这些不同的实验结果可以解释为（至少部分）所用动物模型和药物剂量之间存在不同[37]。

人体实验的结果差异更为显著。在败血症性休克病人和心脏手术病人，一部分研究报道认为小剂量DA可以增加内脏血供[38, 39]，而另一部分研究结果则报道为没有影响[40]。在败血症性休克病人观察到的内脏血供增加存在明显的个体差异，与内脏器官的初始血流量有关[38]。而且，最近有研究表明小剂量DA可以增加败血症性休克病人全身和内脏器官的血流，同时降低内脏器官的氧耗[37]，但这种效应并未见于心脏手术的病人。Ruokonen等在先前的研究中发现，DA作为升压药对内脏器官氧耗的影响存在个体差异，5例病人中有3例氧耗降低，2例升高[39]。这种相互矛盾的结果可能与研究方法不同（如输注DA时的病情严重程度、用药时间长短及剂量等）有关。尽管小剂量DA可以改善败血症性休克病人的氧运输，但降低胃粘膜血流[41]，且不改变粘膜内pH（pHi），后者是反应胃肠道粘膜灌注的可靠指标[17, 40-42]。增加DA的剂量甚至可使pHi进一步降低[43]。

因此，如同对肾功能的影响一样，亦没有确切的证据表明小剂量DA可以改善败血症性休克病人内脏器官的功能，减少多器官功能衰竭的发生。最近的资料甚至提示小剂量DA对内脏器官的氧摄取有潜在的危害作用。
DA 对胃肠运动功能的影响

人类的肠神经系系统存在 DA-2 受体，DA 受体拮抗剂甲氧氯普胺和 domperidone 可改善幽门不的协调运动，后者是良好胃排空所必须的。由此，人们怀疑输注 DA 是否会影响胃肠运动。的确，在健康志愿者的试验中表明，短期应用 DA 可影响饱腹状态下的胃肠运动方式[44]。对危重病人的研究中发现，输注 DA [2.5 ~ 5μg/(kg·min)] 与胃排空延迟密切相关[45]。不论是禁食还是鼻饲的接受机械通气的危重病人，小剂量 DA 均抑制幽门运动[46]。因此，DA 的应用与目前“危重病人首选肠内营养而不是肠外营养”的推荐原则是无法调和的。事实上，DA 可以加重患者对肠内营养的不耐受，因此不建议使用。

DA 对呼吸功能的影响

小剂量 DA 对呼吸功能有二个潜在的不利影响，它们常常未受到重视。首先，研究表明 DA 可以通过抑制颈动脉体化学感受器减弱呼吸对缺氧和高碳酸血症的反应性[47]。其次，DA 可损害肺的通气/血流比值从而降低动脉氧饱和度[48]。两者具有协同作用，必须增加氧供来解决。在机械通气的病人，由于氧供充分，DA 对呼吸的以上两种影响尚不至于引起大的问题，但对正在离开呼吸机的病人，由于小剂量 DA 可以降低机体对缺氧和高碳酸血症的敏感性，这时问题就可能会暴露出来[47]。因此，在应用 DA 的情况下撤离呼吸机时，病人常缺乏针对体交换功能受损的重要生理反馈[47, 49]。矛盾之处在于这样可能会使撤离呼吸机更容易，但有促发呼吸衰的危险[49]。总之，从对呼吸功能影响的角度来看，小剂量 DA 的使用也无积极意义。

DA 对内分泌和免疫功能的影响

垂体前叶在保持机体内分泌和免疫学稳定方面起着重要作用。促肾上腺皮质激素、泌乳素、促性腺激素和促甲状腺激素释放激素是维持机体正常生长代谢和防御机能的决定因素。病情危重时，根据疾病的不同时期（急性期或慢性期）常伴有这些神经内分泌轴的各种变化[50]。在应激反应的初期，所有垂体前叶的激素均被刺激释放，而在迁延较久的危重病人，尽管可以通过外周机制使皮质醇的分泌保持增加，但都继发下丘脑—垂体轴的功能抑制。这些变化的临床意义尚不清楚，急性期变化可能是机体对疾病防御机制的一部分，但在慢性期危重病
人，下丘脑—垂体功能减退可引起异常而有害的代谢变化。研究表明，DA 可以进一步抑制几个垂体前叶主要激素的分泌及功能（图 2），从而对合成代谢和细胞免疫功能造成损害。

泌乳素是一种免疫调节激素，T—淋巴细胞和 B 淋巴细胞上均有其受体。动物实验表明，泌乳素水平降低可削弱细胞免疫功能。DA 是泌乳素释放的主要影响因子，应用外源性 DA 可明显降低血清泌乳素水平，抑制免疫功能，使病人更易遭受感染。Devin 等研究发现，当输注 DA 剂量 > 5μg/（kg min）时，可使血清泌乳素水平下降 90%，伴有一过性 T—淋巴细胞活性下降和淋巴细胞计数减少。而且，还有报道发现在危重病儿童和成人，应用小剂量 DA 也可抑制泌乳素的分泌。DA 除了可引起低泌乳素血症介导的免疫功能抑制以外，还可增加人类免疫缺陷病毒在免疫细胞内的表达。

在危重病患者，应用 DA 还可以影响其他神经内分泌轴。生长激素（GH）是一种典型的应激激素，对多种类型的刺激发生反应，血清浓度显著升高，但在病情迁延较久的危重病人，其分泌受到抑制，血清胰岛素样生长因子-1（IGF-1）水平降低。研究证实，联合应用 GH 释放激素和促甲状腺激素释放激素（TRH）可以恢复 GH 的脉冲式释放和 IGF-1 血清水平，促进外周靶组织如骨骼的合成代谢。长期输注 DA 可进一步抑制 GH 的脉冲式释放和降低血清 IGF-1 血清水平。由肾上腺皮质分泌的脱氢表雄酮（dehydroepiandrosterone sulfate，DHEAS）也是一种促进合成代谢和增强免疫功能的甾类激素，其分泌同样也可因在危重病期间应用小剂量 DA 而受到抑制（图 3）。

正常的甲状腺功能对维持蛋白质、糖及脂肪代谢、GH 分泌和机体反应性十分重要。在危重病期间，甲状腺轴功能紊乱，血清 TSH、T4 和 T3 水平下降，反 T3 水平升高。其中 TSH 的脉冲式释放减少起着关键作用，因为血清甲状腺素水平与 TSH 脉冲式释放量和频率呈显著正相关。甲状腺轴的这种改变曾被称为“甲状腺功能异常的病态综合征”，意指不是真正的甲状腺功能减退。这一概念现已受到挑战，观察发现重新激活危重病人的甲状腺轴可逆转分解代谢亢进状态。的确，持续输注 TRH 来恢复甲状腺素生理水平能减少蛋白质的分解代谢。DA 通过直接抑制 TSH 的释放，加侾示 T3 综合征，导致 T4、T3 水平的进一步下降（图 3），DA 的输注时间也与甲状腺功能受损严重程度呈正相关。在新生儿，医源性的甲状腺功能减退造成的治疗更严重，因为在出生的头几周内甲状腺素对中枢神经系统的发育极其重要，新生儿期的甲状腺功能受损可导致不可逆的中枢神经系统功能损害。

在危重病中，急性期给予 DA 对垂体功能的损害可在其后的慢性期表现出来，慢性期给药则可进一步抑制循环中的垂体激素水平。虽然危重病症的全内分泌变化尚未完全清楚，但使用 DA 所产生的额外抑制效应，尤其是连续应用几天时显然是无益的甚至是有害的。
为了增加败血症性休克患者的组织灌注和氧供，不管其是否存在心功能不全，在使用升压药的基本上常规加用正性变力药的做法仍存在激烈争论[7]。尽管理论上讲，DA 可通过激动 β - 肾上腺素能受体产生正性变力作用，但此作用并不能抵消其副作用。而加用 β - 肾上腺素能受体选择性更强的药物，如多巴酚丁胺，不仅可以避免 DA 的副作用，而且可通过分别滴注使治疗更具针对性和达到剂量个体化。因此，虽然有关比较 DA 与去甲肾上腺素的有说服力的研究资料不多，去甲肾上腺素已成为治疗败血症性休克病人经适当液体治疗后仍存在持续低血压时的一种选择。

结 论

尽管目前有大量可靠证据表明，过去所认为的使用 DA 的种种优点实际上并不存在，因其多巴胺能、α 及 β 肾上腺素能效应，DA 仍作为一线血管活性药物使用。这些作用是剂量依赖的，并且在不同患者中有很大差异。多巴胺可用来增加心率和分布性休克患者的心输出量及维持血压。因为 Goldberg 的研究[1]发现小剂量 DA 可保护肾脏及其他内脏功能，并且大多数人认为小剂量 DA 具有相对较小的副作用，该药被广泛用于 ICU 的危重病人以期保护肾脏及胃肠道功能。然而，这些假设被证明是错误的。事实上，没有证据表明小剂量 DA 对肾功能有任何保护作用或改善急性肾衰患者的预后。并且，也没有证据表明小剂量 DA 对内脏循环有任何改善，甚至一些资料表明其可降低内脏器官的氧摄取。

同时，不断有关于小剂量 DA 副作用的报道。DA 可抑制垂体前叶激素的分泌功能，从而影响细胞的合成代谢和免疫功能。另外，DA 还可抑制肠内营养患者的消化功能及呼吸驱动力。

现有的大量研究资料表明，小剂量 DA 不仅有效，而且还有许多严重的副作用。在这种情况下，广泛应用小剂量 DA 以期保护肾功能已不再合适。鉴于其副作用，对于败血症性休克病人显然有更好的升压药或正性变力药可供选用。

（戴泽平 译 田玉科 校）
参考文献

24. Marik PE, Iglesias J. Low-dose dopamine does not prevent acute renal failure in patients with septic shock and oliguria:
50. Van den Berghe G, de Zegher F, Bouillon R. Clinical review 95: acute and prolonged critical illness as different neuroendo-

