不同浓度罗哌卡因硬膜外镇痛在上腹部大手术中的应用：
一项前瞻、随机、双盲、安慰剂对照研究

Periklis Panousis，MD；Axel R. Heller，MD，PhD；
Thea Koch，MD，PhD；Rainer J. Litz，MD

Department of Anesthesiology and Intensive Care Medicine，University Hospital
Carl-Gustav-Carus，University of Technology，Dresden，Germany

摘要 背景 已有大量文献报道了不同临床条件下实施的胸段硬膜外镇痛(TEA)所具有的各种优势。然而在复合吸入麻醉药、液体治疗、使用血管加压药及血流动力学变化的情况下，手术中硬膜外镇痛应用不同浓度局部麻醉药的影响却罕有报道。我们的实验报道了 TEA 联合全麻在上腹部大手术患者中的应用情况。方法 45 例行上腹部大手术的患者随机分为三组。组 1 与组 2 TEA 每 60 分钟分别给予 0.5% 和 0.2% 的罗哌卡因 10ml 和 0.5 μg 舒芬太尼，组 3 每 60 分钟硬膜外给予 10 ml 生理盐水。切皮前麻醉维持吸入 1 个最低肺泡有效浓度(MAC)的地氟烷复合 60% 的 N₂O。手术中连续监测脑电双频谱指数(BIS)和临床体征(PRST 评分)，根据 BIS 仪表调节吸入地氟烷的浓度，使其维持在 50～55。手术中镇痛不足定义为脉搏加快、出汗、流泪的PRST 评分 >2 分或者平均动脉压(MAP)升高大于基础值的 20%，其治疗可调节呼吸末地氟烷浓度至 1 MAC，若已超过 1 MAC 可静脉输注瑞芬太尼。低血压定义为 MAP 下降大于基础值的 20%，其治疗可减少吸入地氟烷的浓度并维持 BIS 在 50～55，血压仍低时可根据中心静脉压输注液体和去甲肾上腺素。结果 组 1 和组 2 的呼吸末地氟烷浓度显著降低，分别至 0.7 ± 0.1 MAC(P < 0.001)和 0.8 ± 0.1 MAC(P < 0.001)，而组 3 无显著降低。组 1 和组 2 的全部患者在 20 分钟内都发生了显著的低血压 (组 1 MAP 从 80 ± 10 mm Hg 到 56 ± 5 mm Hg)，(组 2 MAP 从 78 ± 18 mm Hg 到 58 ± 7 mm Hg)，P < 0.01。而组 3 MAP 无明显变化(74 ± 12 mm Hg 到 83 ± 15 mm Hg，P = 0.42)。组中心率和心率未发生显著变化，并且组间行静脉输液量和去甲肾上腺素的需要量无显著差异。组 3(7.2 ± 4.9 mg·kg⁻¹·h⁻¹)与组 2(1.6 ± 2.2 mg·kg⁻¹·h⁻¹)相比，手术中使用了更大剂量的瑞芬太尼，P < 0.01。硬膜外应用 0.5% 罗哌卡因患者的任何时间不需要输注瑞芬太尼。结论 硬膜外应用 0.5% 的罗哌卡因与 0.2% 的浓度相比，在使用了一定剂量的血管加压药和液体治疗的情况下，保证一定麻醉深度的同时可更显著地降低地氟烷浓度。

Abstract BACKGROUND: The postoperative beneficial effects of thoracic epidural analgesia (TEA) within various clinical pathways are well documented. However, intraoperative data are lacking on the effect of different epidurally administered concentrations of local anesthetics on inhaled anesthetic, fluid and vasopressor requirement, and hemodynamic changes. We performed this study among patients undergoing major upper abdominal surgery under combined TEA and general anesthesia. METHODS: Forty-five patients undergoing major upper abdominal surgery were randomly assigned to one of three treatment groups receiving intraoperative TEA with either 10 ml of 0.5% (Group 1) or 0.2% (Group 2) ropivacaine (both with 0.5 μg/ml sufentanil supplement), or 10 ml saline (Group 3) every 60 min. Anesthesia was maintained with desflurane in nitrous oxide (60%) initiated at an age-adapted 1 minimum alveolar concentration (MAC) until incision. Desflurane administration was then titrated to maintain an anesthetic level between 50 and 55, as assessed by continuous Bispectral Index monitoring and the common clinical signs (PRST score). Lack of intraoperative analgesia, as defined by an increase in pulse rate, sweating, and tearing (PRST) score >2 or an increase of mean arterial blood pressure (MAP) >20% of baseline, was treated by readjusting the end-tidal concentration of desflurane toward 1 MAC, and above this level by additional rescue IV remifentanil infusion. Hypotension, as defined as a decrease in MAP >20% of baseline, was treated by reducing the end-tidal desflurane concentration to a Bispectral Index level of 50-55 and below that with crystalloid or norepinephrine infusion, depending on central venous pressure. RESULTS: End-tidal desflurane concentration could be significantly reduced in Group 1 to 0.7 ± 0.1 MAC (P < 0.001) and to 0.8 ± 0.1 MAC (P < 0.001) in Group 2, but not in Group 3. Significant hypotension occurred
胸段硬膜外镇痛（thoracic epidural analgesia，TEA）联合全身麻醉（general anesthesia，GA）已成为行上腹部大手术患者围手术期治疗的常用麻醉方法。一篇最新发表的综合分析比较了手术后硬膜外镇痛与患者静脉自控阿片类药物镇痛[1]。局部麻醉药和阿片类药物作用于脊髓可提供完善的镇痛效应，减少激素和代谢性应激反应，加速胃肠道功能恢复，因此可缩短手术后恢复时间，利于手术后活动和进行物理治疗。目前认为TEA是通过阻滞伤害性感觉传入神经和胸腰段交感传出神经而发挥上述作用[2,3]。

在长效局部麻醉药中，S-镜像异构体罗哌卡因越来越多地应用于持续硬膜外镇痛。与布比卡因相比，其对中枢神经系统和心脏的毒性很低，并可减少不必要的运动阻滞（分离麻醉）[4]。已有关于不同罗哌卡因制剂联合或不联合阿片类药物或可乐定用于手术后镇痛的报道[5-12]。然而在复合吸入麻醉药和有血流动力学变化时，硬膜外应用不同浓度局部麻醉药的效果却少有报道。

我们假设硬膜外应用较高浓度的罗哌卡因可更显著地减少地氟烷的浓度（首要结论），但是对血流动力学的影响也较大，因此，需要使用更多血管加压药和液体支持治疗（次要结论）。

方法

1. 患者的选择

在伦理委员会（德累斯顿科技大学药学院伦理委员会，EK-DD，187102003）批准并签署了知情同意书后，45例患者参与了实验，年龄为51-66岁，ASA分级Ⅱ-Ⅲ级，将择期行上腹部大手术（表1）并采用TEA+GA联合麻醉。

<table>
<thead>
<tr>
<th>表 1 患者特征：数据以平均值±标准差及患者数表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>组1 0.5%罗哌卡因 (n = 15)</td>
</tr>
<tr>
<td>患者数</td>
</tr>
<tr>
<td>年龄 (岁)</td>
</tr>
<tr>
<td>身高 (cm)</td>
</tr>
<tr>
<td>体重 (kg)</td>
</tr>
<tr>
<td>性别 (男/女)</td>
</tr>
<tr>
<td>辅助用药</td>
</tr>
<tr>
<td>受体阻滞剂 (n)</td>
</tr>
<tr>
<td>ACEI (n)</td>
</tr>
<tr>
<td>Ca²⁺通道阻滞剂 (n)</td>
</tr>
<tr>
<td>手术时间 (min)</td>
</tr>
<tr>
<td>手术类型</td>
</tr>
<tr>
<td>PPPD (n)</td>
</tr>
<tr>
<td>肝切除术 (n)</td>
</tr>
<tr>
<td>胃切除术 (n)</td>
</tr>
</tbody>
</table>

注：患者特征，类型，手术持续时间以及辅助用药：数据以平均值±标准差或例数表示。两组之间差异无显著性

PPPD = 脐十二指肠切除术；ACEI = 血管紧张素转化酶抑制剂
将患者随机分成三组，组 1 术中硬膜外给予 0.5% 罗哌卡因 + 0.5 μg/ml 舒芬太尼，组 2 给予0.2%罗哌卡因 + 0.5 μg/ml 舒芬太尼，对照组组 3 给予生理盐水。由护士根据电脑随机区块分发名单配制试剂，然后再将贴有“TEMAC-Study”标签及相应患者编号的注射器送至手术室（operating room, OR）。参与实验的麻醉医师对患者的分组情况一无所知。患者的排除标准为：拒绝硬膜外镇痛、肥胖（体重指数 >30）、药物滥用史或酗酒史、手术前行镇痛治疗、脑血管及中枢神经系统疾病、已存在的出血及凝血障碍及伴有抗血小板治疗、已知的过敏体质及孕妇。

2. 手术前准备

患者于麻醉诱导前 2 小时给予 NPO 并在进入 OR 前 45 分钟口服 7.5 mg 咪达唑仑（Dormicum®，Roche Deutschland Holding GmbH, Grenznach-Wyhlen, Germany）。其他辅助用药包括抗高血压药物，如 β-受体阻滞剂、血管紧张素转化酶抑制剂，Ca2+通道阻滞剂则根据科室标准治疗方案继续服用。

连接 5 导心电图监测，可测定 II、aVF、V5 导联的 ST 段压低，并记录血氧饱和度。经左侧桡动脉穿刺连续监测动脉血压（IntelliVue®，MP70, Philips, Böblingen, Germany）。经无名（头臂）静脉置入中心静脉导管连续监测中心静脉压。以脑电双频谱指数（Bispectral Index, BIS）（BIS sensor，Aspect Medical Systems，software version 3.2, Natick, MA）和 PRST 评分（以心率、动脉压、出汗、流泪为基础，见附录）判断麻醉深度。

3. 胸段硬膜外镇痛

麻醉诱导前患者坐位行中胸段硬膜外穿刺，以 18 号 Tuohy 穿刺针向头端倾斜穿刺（Perisafe® Plus, BD, biddford-on-Avon, UK），注水阻力消失判断穿刺成功并置管 3～4 cm，行负压实验排除误入静脉的情况下，然后给予试验剂量 2% 利多卡因 4 ml 以排除误入蛛网膜下腔的可能。手术中镇痛采取每 60 分钟硬膜外给予各组药物 10 ml。发生低血压时不改变用药剂量。

4. 全身麻醉

GA 诱导用 1.5 mg/kg 丙泊酚（Propofol® 1%，Fresenius-Kabi, Bad Homburg, Germany）和 0.5 μg/mg 舒芬太尼（Sufentanil®, JanssenCilag, Neuss, Germany）。给予 0.5 mg/kg 罗库溴铵（Esmeron®, Organon, OberschleBheim, Germany）后行气管插管。GA 维持用地氟烷（Suprane®, Baxter, UnterschleBheim, Germany）和 O2/N2O(35%/60%) 混合气。患者吸入 1 L/min 的新鲜气体行机械通气，调整其分钟通气量使其呼气末 PCO2 维持在 36~40 mm Hg（Primus®, Dräger, Lübeck, Germany）。

5. 实验流程

首次硬膜外用药应该在 GA 诱导后、手术开始前至少 20 分钟，以利于局部麻醉药在硬膜外间隙充分扩散。根据 Nickalls 和 Mapleson[13] 发表的 Iso-MAC 表查询符合其年龄和应用 N2O 的情况下地氟烷的最低肺泡有效浓度（minimum alveolar concentration, MAC），并在手术前维持其呼气末浓度为 1 MAC。此时记录呼气末地氟烷浓度、BIS 和 PRST 评分的基础值。

诱导前若平均动脉压（mean arterial pressure, MAP）下降大于基础值的 20%，首先减小呼气末地氟烷的浓度使其 BIS 值维持在 50~55，同时在保证中心静脉压不高于 10 mm Hg 的情况下，输注晶体液以增加前负荷。若血压仍降低，可开始持续输注去甲肾上腺素（Arterenol®, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany）使 MAP 升高至少达到基础值的 80%。

调节呼气末地氟烷浓度使 BIS 值维持于 50~55，每次调节可允许 5 分钟的平稳期。若 BIS 值 >55，即使 PRST 评分不变，也要增加其呼气末浓度至最大到 1 MAC。若其呼气末浓度已大于 1 MAC，而 PRST 评分 >2 分或 MAP 升高 ≥20% 基础值时，则需要输注起始浓度为 0.2 μg·kg⁻¹·min⁻¹ 的瑞芬太尼（Ulti-va®, GlaxoSmithKline, Munich, Germany）直至 PRST 评分和 MAP 恢复至基础值。若 BIS 值低于 50~55，则逐渐停止输注瑞芬太尼。

以羟乙基淀粉 130（Voluven®, Fresenius-Kabi, Bad Homburg, Germany）补充失血量，红细胞比容低于 25% 时输入浓缩红细胞。

血流动力学不良反应定义为高血压（收缩压升高 >20% 基础值）、低血压（收缩压下降 >20% 基础值）、心率过速（心率加快 > 基础值 30%）和心动过缓（心率减慢 > 基础值 30%）。心率低于 45 次/min 则需使用阿托品 0.01 mg/kg 治疗。

整个实验期间可通过以下两种方式控制由于 BIS 监测导致的肌电图活动增加，一是连续监测 BIS XP 工作平台上肌电图活动指数，同时神经刺激仪以 4 个
成串刺激（2 Hz，2 秒）方式进行足神经电刺激控制神经肌肉阻滞的恢复。

6. 手术后处理

缝合皮肤后停止吸入麻醉药，在 OR 拔管后，各组患者立即接受 0.2% 罗哌卡因和 0.5 μg/ml 舒芬太尼硬膜外自控镇痛，速率为 10 ml/h，单次剂量可达 5 ml，两次间隔锁定时间为 20 分钟。为避免手术中知晓和手术中回忆，患者将分别于手术后即刻和手术后 2 天出院时受 Brice 问卷调查[14]。在麻醉后恢复室或重症监护病房，急性疼痛治疗主治麻醉医师每天至少 3 次通过检测患者的感觉感受判断硬膜外阻滞范围。手术后所有患者都通过 Baxter I 痛泵 (Baxter, Deerfield, IL) 进行硬膜外自控镇痛，以 5 ml/h 的速率持续输注 0.2% 罗哌卡因和 0.5 μg/ml 舒芬太尼，一次药量可达 5 ml，两次间隔给药时间不少于 20 分钟。

7. 统计学

采用 Windows 社会科学统计程序进行统计学分析 (SPSS®，release 12.0, Chicago, IL)。基于之前的研究我们计算出罗哌卡因和舒芬太尼剂量以及所需患者人数。对先前实验（患者每 60 分钟接受 0.3% 的罗哌卡因 10 ml 和 10 μg 舒芬太尼）的把握度分析表明，维持同水平 BIS 使地氟烷呼气末浓度下降 50% (25% MAC) 而产生 0.8 的检验效能（α = 0.05），且保证在切皮时已达到理想的血药浓度，需 15 例患者[15]。

数据绝对值以百分比表示并采用 Fisher 精确 χ² 检验及 Wilcoxon 秆和检验进行分析。连续数据进行方差分析表示为平均值 ± 标准差。数据的多项比较采用 Bonferroni 校正。组间连续数据的纵向比较需建立常规线性模型。

结 果

全部患者都采用胸 7～8 硬膜外穿刺后再联合全身麻醉的麻醉方法。患者的个人特征、伴随疾病、手术类型和持续时间及相应用药没有显著差异（表 1）。有 45 例患者同意并参与了此次实验。由于吸入地氟烷 < 1 MAC 时输注了瑞芬太尼，组 2 中 2 例患者的数数据被排除。其余 43 例患者的数据参与到了最终的统计。

组 1 呼气末地氟烷浓度从 1 MAC（2.6 vol%）下降到 0.7 ± 0.1 MAC（1.3 ± 0.2 vol%，P < 0.001 与对照组，P = 0.001 与组 2）。组 2 则从 1 MAC 下降到 0.8 ± 0.1 MAC（1.8 ± 0.3 vol%），与组 3 比 P < 0.001。然而组 2 由于镇痛不足需间歇性使用瑞芬太尼 (0.6 ± 2.2 mg/h)。组 3 呼气末地氟烷浓度则不能下调。与硬膜外应用 0.2% 罗哌卡因的患者 (1.6 ± 2.2 mg · kg⁻¹ · h⁻¹) 相比，组 3 所有患者在手术过程中需持续输注更大剂量的瑞芬太尼 (7.2 ± 4.9 mg/h)，P < 0.01。而应用了 0.5% 罗哌卡因的患者不需使用瑞芬太尼。

根据连续 BIS 监测和 PRST 评分调整地氟烷浓度。0.5% 罗哌卡因组下调地氟烷浓度的概算高于 0.2% 组 (51 与 34, P < 0.01)。硬膜外用药后组 1 和组 2 的患者都发生了低血压，其首要治疗为静脉输注晶体液和去甲肾上腺素，P < 0.05。晶体液和胶体液的输入量，维持血压波动小于基础值的 20% 所用去甲肾上腺素的药量，组间差异不显著（表 2）。实验中采取相应措施（加用镇痛药、维持血容量内量、使用血管加压药）来维持血流动力学在观察期间相对稳定（图 1，图 2）。

表 2 手术中所需液体量、去甲肾上腺素和总罗哌卡因剂量

<table>
<thead>
<tr>
<th>组</th>
<th>0.5% 罗哌卡因</th>
<th>0.2% 罗哌卡因</th>
<th>对照组</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 15)</td>
<td>(n = 13)</td>
<td>(n = 15)</td>
</tr>
<tr>
<td>手术中</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>晶体液 (ml · kg⁻¹ · h⁻¹)</td>
<td>6.8 ± 2.5</td>
<td>7.5 ± 3.4</td>
<td>8.0 ± 3.9</td>
</tr>
<tr>
<td>胶体液 (ml · kg⁻¹ · h⁻¹)</td>
<td>1.2 ± 1.1</td>
<td>2.2 ± 1.0</td>
<td>1.7 ± 1.7</td>
</tr>
<tr>
<td>NE (μg · kg⁻¹ · h⁻¹)</td>
<td>0.05 ± 0.06</td>
<td>0.05 ± 0.04</td>
<td>0.02 ± 0.04</td>
</tr>
<tr>
<td>罗哌卡因总量 (mg)</td>
<td>242 ± 102</td>
<td>91 ± 27</td>
<td></td>
</tr>
</tbody>
</table>

注：手术中所需液体量以及罗哌卡因总量。数据以平均值 ± 标准差表示
NE = 去甲肾上腺素；* P < 0.001
首先，我们比较了硬膜外使用两种不同浓度罗哌卡因对吸人地氟烷浓度的影响。其次，比较其血流动力学副作用、液体输入量以及镇痛不足时瑞芬太尼的用量。

尽管 0.5% 罗哌卡因组使用的局部麻醉药量显著高于另一组（表 2），但是各组间液体输入量和去甲肾上腺素的使用量没有显著差异。

依照假设，较大浓度的罗哌卡因可导致更严重的低血压，进而需要更大剂量的血管加压药和液体。然而实际上，不同浓度罗哌卡因组血管加压药和液体的输入量并无显著差异。其原因可能是 0.2% 的罗哌卡因并不能提供完善的手术中镇痛，因此，加用了瑞芬太尼。0.2% 的罗哌卡因与舒芬太尼、瑞芬太尼相协同，与 0.5% 罗哌卡因和舒芬太尼合用相比，使 MAP 下降更显著。

然而，我们的实验并不能够有效的评估其对液体输入和血管加压药使用（即次要结果）的影响。因为上腹部大手术的围手术期液体管理受到很多因素影响，包括手术中失血、手术时间、手术前肠道准备及切口大小等。手术中液体需要量并不单一受局部麻醉药浓度或吸气末地氟烷浓度的影响。为了排除目前数据中可能存在的 B 误差，每组需 182～956 例患者才能使次要结果的组间差异有统计学意义。

最重要的问题是怎样区别有效镇痛和充分镇痛并将手术中镇痛的效果量化。我们使用了 Guignard [1] 在一篇综述中对于手术中镇痛的定义，其对充分镇痛定义为有害刺激时及刺激后，镇痛可维持血流动力学状态稳定 [18,21]。因此我们使用了部分常见的临床体征，之前的一些临床实验将这些体征量化，包含于 PRST 评分和 BIS 监测 [16,17]。然而，硬膜外使用局部麻醉药和阿片类药物不仅可以阻滞手术区脊髓水平的疼痛冲动，由于局部麻醉药向脊髓前端的扩散和全身药物重吸收，还可以影响全身麻醉作用。因此，在吸入麻醉药协同作用下，可能影响镇痛深度。因此，在我们的实验中，要区分镇痛不足和镇痛不足。镇痛不足为在一定麻醉深度（BIS ≤ 50）下，吸入 1 MAC 地氟烷时，量化的影响程度变化 ≥ 20%；镇痛不足为镇痛深度不足，BIS > 55，临床体征没有变化。PRST 评分包括了在麻醉中评估镇痛深度和镇痛有效的最常用的临床体征。尽管还
指数	< 基础值的 10%	< 基础值的 20%	> 基础值的 20%	< 基础值的 20%	> 基础值的 20%	无	皮肤触诊潮湿	可看见汗珠	闭眼	闭眼	眼内	眼内过多泪水	眼内过多泪水	分数	
收缩压	0	1	2	1	2	1	1	2	2	2	2	2	1	1	1
心率	0	1	2	1	2	1	1	2	2	2	2	2	1	1	1
出汗	无	1	2	2	2	1	1	2	2	2	2	2	1	1	1
流泪	无	1	2	2	2	1	1	2	2	2	2	2	1	1	1

注：Adapted from Schwender D, Daunerder M, Klaising S, Mulzer S, Finsterer U, Peter K. Monitoring intraoperative awareness. Vegetative signs, isolated forearm technique, electroencephalogram and acute evoked potentials. Der Anaesthesist 1196; 45: 708-21

有其他评判标准，但是在实际操作中，认为临床体征是最实用的评判标准[2]。

另一个方法学上的问题是没有单独应用 0.5 μg/ml 舒芬太尼镇痛组。尽管在实验中，使用舒芬太尼作为辅助性镇痛提高索他卡因的镇痛效果，然而这个实验的关注点仍是索他卡因。因此临床上更适合设计两种不同浓度的索他卡因与安慰剂 (10 ml 0.9% NaCl) 进行对照，从而更容易判断手术中镇痛缺失的情况。

总之，在静脉输液和使用血管加压药相同水平的情况下，0.5% 的索他卡因比 0.2% 的浓度可更大程度地减少吸入麻醉药的浓度。

参考文献