Secondary Logo

Journal Logo

Stromal immune infiltration in HIV-related diffuse large B-cell lymphoma is associated with HIV disease history and patient survival

Chao, Chuna; Xu, Lanfanga; Silverberg, Michael J.b; Martínez-Maza, Otonielc,d; Chen, Lie-Honga; Castor, Brandone; Abrams, Donald I.f; Zha, Hongbin D.g; Haque, Reinaa; Said, Jonathane

doi: 10.1097/QAD.0000000000000780
CLINICAL SCIENCE
Free

Objective: Understanding tumor microenvironment and its impact on prognosis of HIV-related lymphomas may provide insight into novel therapeutic strategies.

Design: We characterized the relationship between infiltrating immune cells with tumor characteristics, HIV disease history and survival in 80 patients with HIV-related diffuse large B-cell lymphoma (DLBCL) diagnosed in the era of combined antiretroviral therapy (1996–2007) at Kaiser Permanente California. Eighty patients with HIV-unrelated DLBCL were included for comparison.

Methods: Data on patients’ clinical history were obtained from Kaiser Permanente's electronic health records. The density of stromal CD4+, CD8+ and FOXP3+ T cells and CD68+ macrophages, as well as tumor molecular characteristics were examined using immunohistochemistry. The associations between stromal immune infiltration and patient's clinical history or tumor characteristics were examined using Kruskal–Wallis tests or Pearson's correlation coefficient. The effect of stromal immune infiltration on 2-year mortality was evaluated in multivariable logistic regression.

Results: Compared with HIV-unrelated DLBCL, patients with HIV-related DLBCL had significantly reduced stromal CD4+ and FOXP3+ T cells, but increased density of macrophages. Increased density of stromal macrophages was correlated with lower circulating CD4+ cell count at DLBCL diagnosis. Tumor molecular characteristics, including BCL6, p53 and cMYC expression, but not Epstein–Barr virus infection status, were significantly correlated with stromal immune infiltration, particularly FOXP3+ T cells. A higher density of infiltrating CD8+ T cell was significantly associated with reduced mortality in patients with HIV-related DLBCL (odds ratio = 0.30 [0.09–0.97] for ≥25 vs. <10%).

Conclusion: These data provide evidence for the prognostic significance of cytotoxic T cells in determining outcomes of HIV-related lymphoma.

aDepartment of Research and Evaluation, Kaiser Permanente Southern California, Pasadena

bDivision of Research, Kaiser Permanente Northern California, Oakland

cDepartments of Obstetrics and Gynecology and Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles

dDepartment of Epidemiology, UCLA Fielding School of Public Health, Los Angeles

eDepartment of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles

fDepartment of Medicine and San Francisco General Hospital, University of California, San Francisco, San Francisco

gLos Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, California, USA.

Correspondence to Chun Chao, PhD, Department of Research and Evaluation, Kaiser Permanente Southern California, 100 S Los Robles Ave, 2nd floor, Pasadena, CA 91101, USA. Tel: +1 626 564 3797; fax: +1 626 564 3409; e-mail: chun.r.chao@kp.org

Received 21 January, 2015

Revised 9 June, 2015

Accepted 16 June, 2015

Back to Top | Article Outline

Introduction

The tumor microenvironment plays a vital role in cancer development [1,2]. The interaction between tumor cells and stromal cells, such as infiltrating immune cells, fibroblasts and endothelial cells may create a local environment that supports or inhibits tumor growth. Antitumor immunity mediated by infiltrating T cells, macrophages and dendritic cells play an important role in determining disease progression and patient outcome in a variety of cancers, including diffuse large B-cell lymphomas (DLBCLs) [3–5]. To this end, several studies have demonstrated the prognostic significance of the stromal immune cells through gene expression profiling [6–8], immunohistochemistry [9–11] or functional/animal studies [12,13], lending support to therapeutic strategies that aim to restore immune surveillance in the tumor microenvironment.

Despite knowledge advancements about antitumor immunity and its treatment implications in lymphomas in the general population, there is a lack of studies examining the microenvironment for HIV-related lymphomas. As such, little is known about the microenvironment and the role of antitumor immunity among immunodeficient populations, such as HIV-infected patients. Liapis et al.[14] have for the first time attempted to characterize the microenvironment of HIV-related DLBCL. They showed increased vessel density and altered infiltrating T-cell populations compared with patients with sporadic DLBCL. These findings highlighted the need to better understand tumor microenvironment unique to HIV-related lymphomas and its therapeutic implications.

In this study, we examined the immune component of the microenvironment, including stromal T-cell subpopulations and tumor-associated macrophages in HIV-related DLBCL. We sought to understand whether the composition of infiltrating immune cells differs by clinical and molecular characteristics of the tumor, whether the composition of infiltrating immune cells may be affected by HIV disease history such as severe immunosuppression, and whether the density of specific infiltrating immune cells can predict patient survival in HIV-related DLBCL. To warrant generalizability to current clinical management of DLBCL in HIV-infected patients, the present study is entirely based on contemporary patients diagnosed in the postcombination antiretroviral therapy (ART) era.

Back to Top | Article Outline

Methods

Study population

All adult HIV-infected patients (≥18 years) diagnosed with incident DLBCL between 1996 and 2007 were identified from the Kaiser Permanente Southern and Northern California Health Plans, two large integrated healthcare delivery systems. DLBCL diagnoses were ascertained from Kaiser Permanente's Surveillance, Epidemiology and End Results-affiliated cancer registries. HIV infection status was identified through record linkage with the health plans’ HIV registries.

A group of patients with HIV-unrelated DLBCL were also selected for comparison. Tumor biology can differ by age and DLBCL tend to be diagnosed at younger age in HIV-infected persons. Furthermore, the HIV-infected cohort in California was 95% men and the majority was of non-Hispanic White race. To ensure comparability of patients with HIV-unrelated DLBCL with the patients with HIV-related DLBCL, we matched patients 1 : 1 by age groups (i.e., <30, 30–50 and >50 years), sex and race (White vs. non-White). Appropriate tumor specimens of matched HIV-unrelated DLBCL patients for patients with HIV-related DLBCL were unavailable. The comparisons for those four patients with HIV-infected DLBCL were thus replaced by additional matched HIV-unrelated DLBCL patients for other HIV-infected patients.

Back to Top | Article Outline

Pathology review and tissue microarray construction

Archived tumor specimens were retrieved and hematoxylin and eosin-stained slides were reviewed to confirm the DLBCL diagnosis as well as to identify representative tumor blocks for tissue microarray (TMA) construction (at the UCLA Core Microarray Facility). Whenever possible three 0.6-mm cores from different areas of the donor block were obtained from each case and inserted in a grid pattern into a recipient paraffin block using a tissue arrayer (Beecher Instruments, Silver Spring, Maryland, USA).

Back to Top | Article Outline

Immunohistochemistry staining

Immunohistochemistry staining was performed on TMA cores to analyze the stromal expression of CD4+ (helper T cells), CD8+ (cytotoxic T cells), FOXP3+ (Treg cells), and CD68+ (macrophage). In addition, the expression of the following markers was assessed in the tumor cells: BCL2, BCL6, p53, Ki-67, cMYC. Expression of CD10+, MUM1 and BCL6 were used to determine the germinal center phenotype using the Hans’ algorithm [15]. The percentage of stromal cells that expressed CD4+, CD8+, FOXP3+ and CD68+, and the percentage of tumor cells that expressed Ki-67 were digitally scored on a computerized automated platform. The percentage of tumor cells that expressed BCL2, BCL6, p53 and cMYC was scored manually by one study pathologist and confirmed by another. Cases with discrepant scores (about 10%) were resolved by re-review with double-headed microscope. Tumor Epstein–Barr virus (EBV) infection was determined by in-situ hybridization of EBV encoded RNA and was considered positive if at least 75% of the DLBCL cells had detectable EBV. Among EBV-positive tumors, LMP1 expression was determined based on immunohistochemistry staining.

Normal tonsillar lymphoid tissue was included as a positive control. Negative controls for each case consisted of substituting the primary antibody with isotype-specific noncross reacting antibody matching the primary antibody. The detailed information on TMA construction, antibody, incubation method and signal detection for each marker were described elsewhere [16].

Back to Top | Article Outline

Diffuse large B-cell lymphoma morphologic variants

DLBCL morphologic variant subtyping was performed by the two study pathologists (J.S. and H.D.Z.), who independently reviewed pathology reports, hematoxylin and eosin slides and stained tumor marker expression data. Minor classification discrepancies on two patients were resolved by the pathologists after applying the WHO's 2008 classification system of tumors of the hematopoietic and lymphoid tissues.

Back to Top | Article Outline

Ascertainment of patient survival

Two-year mortality was chosen as the outcome because most deaths in HIV-infected patients (85% in our study) occurred within 2 years after DLBCL diagnosis. Overall mortality ascertainment was complete for all patients (even if the person terminated Kaiser Permanente membership) through record linkage with Kaiser Permanente's membership and utilization files, California's state death file and Social Security death records. As such, there was no loss-to-follow-up.

Back to Top | Article Outline

Covariates

The International Prognostic Index (IPI) was calculated based on age, clinical stage, extranodal involvement, serum lactose dehydrogenase, and performance status [17,18]. Age at DLBCL diagnosis, stage at diagnosis, extranodal involvement and initial chemotherapy were collected from Kaiser Permanente's cancer registries. Serum lactose dehydrogenase level and circulating CD4+ cell counts at DLBCL diagnosis (and their nadir) were obtained from the laboratory databases. Performance status and chemotherapy were ascertained from standardized medical record review [19]. We collected HIV disease factors from HIV registries, including prior AIDS diagnosis, use of ART and duration of known HIV infection.

Back to Top | Article Outline

Statistical analysis

The density of the five stromal immune cells were calculated and compared by HIV status using the t-test statistic. Next, among HIV-infected patients, we compared the density of the stromal immune cells by stage at diagnosis, DLBCL variant (centroblastic, immunoblastic and plasmablastic), germinal center phenotype, prior AIDS diagnosis, ART use prior to DLBCL diagnosis and tumor EBV infection and LMP1 status, using the Kruskal–Wallis tests. The association between circulating CD4+ cell count (both at DLBCL diagnosis and nadir) and infiltrating immune cells was examined using Pearson's correlation coefficient. Similarly, the association between infiltrating immune cells and tumor molecular characteristics, including the expression of BCL2, BCL6, p53, Ki-67 and cMYC, was examined using Pearson's correlation coefficient.

Kaplan–Meier survival curves were generated for CD8+ and FOXP3+ T cells and CD68+ macrophage for the following density categories: less than 10, 10–24, 25–49, 50–74 and at least 75%. However, because less than five patients had stromal immune cell density at 50% or greater, the following combined categories were presented: less than 10, 10–24 and at least 25%. Because most patients with HIV-related DLBCL had minimal CD4+ T-cell infiltration, we dichotomized CD4+ T cells into two categories: less than 1 and at least 1%. The association between infiltrating immune cells and 2-year overall mortality was examined using bivariate and multivariable logistic regression adjusting for IPI, germinal center phenotype and DLBCL variant. Multivariable models restricted to those who received chemotherapy treatment were also performed. Missing data were handled using the multiple imputation method described by Rubin [20]. All analyses were performed with SAS Version 9.2 (SAS Institute, Cary, North Carolina, USA).

Back to Top | Article Outline

Results

The demographic and clinical characteristics of the 80 patients with HIV-related and the 80 with matched HIV-unrelated DLBCL are presented in Table 1. The mean age at DLBCL diagnosis was similar by HIV status (50 years old) due to matching. Compared with HIV-uninfected patients, HIV-infected patients were more likely to be diagnosed at advanced stage (48 and 29%; P = 0.01), with extranodal involvement (43 vs. 11%, P < 0.01), germinal center phenotype (39 vs. 26%; P = 0.01), and immunoblastic (23 vs. 6%) or plasmablastic subtypes (8 vs. 1%, P < 0.01). HIV-infected patients in this study had a mean circulating CD4+ cell count at DLBCL diagnosis of 206 cells/mm3, and a mean of 5 years duration of known HIV infection prior to DLBCL diagnosis. In addition, 43% of the patients with HIV-infected DLBCL had a prior AIDS diagnosis, and 65% patients had a history of ART use at time of DLBCL diagnosis (Table 1).

Table 1

Table 1

Back to Top | Article Outline

HIV infection status and stromal immune cells

Density of infiltrating immune cells by HIV infection status is shown in Table 2. The majority of HIV-related DLBCL patients had minimal CD4+ T-cell infiltration (i.e., 75% of the patients had less than 1% of stromal CD4+ T cells, data not shown). Compared with HIV-unrelated DLBCL, HIV-related DLBCL showed significantly reduced density of infiltrating CD4+ T cells (mean = 1.8 vs. 14.8% for HIV-related vs. HIV-unrelated DLBCL, respectively, P < 0.001) and FOXP3+ Treg cells (7.3 vs. 22.5%, P < 0.001), but significantly increased density of infiltrating CD8+ T cells (19.9 vs. 14.6%, P = 0.017) and macrophages (15.0 vs. 8.7%, P = 0.006).

Table 2

Table 2

Back to Top | Article Outline

Stromal immune cells and HIV disease history

There was a greater degree of stromal macrophage infiltration in those with lower CD4+ cell count at DLBCL diagnosis (Pearson's correlation coefficient = −0.25, P value = 0.05). A similar but weaker association with stromal macrophages and the nadir circulating CD4+ cell count was also observed (Pearson's correlation coefficient = −0.18, P value = 0.14). No association was found between circulating CD4+ T cells and stromal density of any of the T cells examined (data not shown). However, having an AIDS diagnosis prior to the DLBCL diagnosis was associated with a substantially reduced infiltrating CD4+ T cells (mean [SD] = 0.6 [6.91%] and 2.7% [0.9%], P value = 0.09). Although all our patients with HIV-related DLBCL were diagnosed in the ART era, not all patients had initiated ART at the time of DLBCL diagnosis. To this end, we did not find an association between ART use prior to DLBCL diagnosis and any of the stromal immune cells examined (data not shown).

Back to Top | Article Outline

Epstein–Barr virus infection status and stromal immune cells in HIV-related diffuse large B-cell lymphoma

Seventy patients with HIV-related DLBCL who had a valid EBV results were included in this analysis. One-third (22 of 70) of them were positive for tumor EBV infection. When we examined the stromal immune cells by EBV status, a greater density of CD4+ T cells was found in the EBV-negative compared with the EBV-positive DLBCLs (mean: 2.2 vs. 0.5%, respectively), although this difference was not statistically significant (P = 0.19). EBV-negative HIV-related DLBCL also demonstrated slightly lower density of FOXP3+ Treg cells compared with EBV-positive DLBCL (mean: 6.2 vs. 9.6%, respectively, P = 0.07). The level of stromal CD8+ T cell (20.6 vs. 19.8%) and CD68+ macrophages (13.4 vs. 15.9%) appeared to be similar by tumor EBV status. When we explored the link between LMP1 expression and these stromal immune cells among EBV-positive HIV-related DLBCLs, no association was found between LMP1 expression and CD4+ or FOXP3+ T cells (data not shown).

Back to Top | Article Outline

Stromal immune cells and diffuse large B-cell lymphoma characteristics

When we examined the stromal immune cells by DLBCL variant in HIV-related DLBCL, we observed a significantly elevated density of stromal FOXP3+ Treg cells in plasmablastic subtype, compared with centroblastic or immunoblastic subtypes (mean [SD] = 13.4 (9.1%), 6.5 (9.2%), and 7.7% (10.6%), respectively, P = 0.04). Stromal macrophage density appeared to be elevated in immunoblastic subtype compared with the centroblastic subtype despite lack of statistical significance (mean [SD] = 24.2 (21.3%) and 11.8% (12.0%), respectively). No clear association was found between the stromal immune cells examined and clinical stage or cell-of-origin (data not shown).

When we examined the relationship between stromal immune cells and tumor molecular characteristics, stromal FOXP3+ Treg cells were found to be positively associated with tumor expression of p53 and cMYC (Pearson's correlation coefficient = 0.37 [P < 0.01] and 0.32 [P < 0.1], respectively], and inversely associated with BCL6 (Pearson's correlation coefficient = −0.31 [P = 0.01]) (Table 3).

Table 3

Table 3

Back to Top | Article Outline

Stromal immune cells and patient survival

Figure 1 shows the Kaplan–Meier survival curve in HIV-related DLBCL by stromal immune cell density. In multivariable logistic regression adjusting for IPI, germinal center phenotype and DLBCL variant, a higher density of stromal CD8+ T cells was significantly associated with reduced mortality (odds ratio [OR] for ≥25 vs. <10% = 0.30, 95% confidence interval 0.09–0.97). Reduced mortality was also suggested for those with higher density of stromal CD4+ T cells (OR for >1 vs. ≤1% = 0.43 [0.14–1.31]), and those with lower density of stromal macrophages (OR for >25 vs. <10% = 2.14 [0.48–9.43]), despite lack of statistical significance (Table 4). Similar OR estimates were obtained when we restricted the analyses to only those who received chemotherapy (data not shown).

Fig. 1

Fig. 1

Table 4

Table 4

Back to Top | Article Outline

Discussion

Little is known about the tumor microenvironment in the setting of HIV-related lymphomas. In this study, we found significant differences in the density of important stromal immune cells between HIV-related and HIV-unrelated DLBCL, confirming findings previously reported by Liapis et al.[14] based on a smaller sample. In addition, we observed an association between stromal immune cells and HIV disease history, a novel finding that may have implication for HIV disease management. Most importantly, we are among the first to link the density of stromal immune cells to patient survival outcomes in HIV-related DLBCL and reported the prognostic significance of CD8+ T cells on survival. These findings suggest that novel therapeutic approaches targeting the microenvironment, for example, by restoring T-cell mediated tumor surveillance may have particular benefits among HIV-infected patients who do not respond well to standard chemotherapy.

The reduced density of Treg cells and elevated infiltration of macrophages seen in HIV-related DLBCL is consistent with a pattern generally associated with poorer prognosis. Intratumoral T cells are thought to have an important impact on antitumor immunity [21]. Treg cells affect immune responses of a variety of immune cells, including T cells, B cells and natural killer cells [22]. Although Treg cells are thought to induce immunosuppressive phenotype, several studies of DLBCL and follicular lymphoma have linked high number of Treg cells to superior survival [23–25]. Tumor-associated macrophages, on the contrary, have generally been shown to correlate with disease progression in a variety of cancers, including DLBCL and follicular lymphomas [26,27]. As shown in in-vitro and in-vivo studies, macrophages may promote angiogenesis by secreting cytokines and other angiogenic factors such as the VEGFA and MMP9, which also support the growth of lymphomas [28]. We also observed very limited infiltrating CD4+ T-cell population in HIV-related DLBCL. The prognostic significance of infiltrating CD4+ T cells is less clear and may depend on the distribution of subpopulations of CD4+ T cells. However, some studies suggest favorable survival profiles for patients with higher number of overall stromal CD4+ T cells [29,30].

Interestingly, patients with HIV-related DLBCL did not have reduced level of stromal CD8+ T cells in our study. Studies suggest that CD8+ T cells may directly target lymphoma cells [31]. Higher stromal density of CD8+ T cells significantly predicted improved patient survival in our cohort of HIV-related DLBCL, independent of the IPI score. Our finding is consistent with those in lymphomas in the general population [32–34]. The relationship between stromal CD8+ T cells and patient survival outcomes may reflect compromised major histocompatibility complex restricted immune function, resulting in a loss of effective tumor immunosurveillance [8]. Loss of cell adhesion molecules in the microenvironment has also been linked to loss of stromal CD8+ T- cell function, when loss of stromal CD8+ T-cell function has been linked to poor patient outcomes [35]. Our findings suggest that CD8+ T cells may be an important component of lymphoma-specific immune response in HIV-related lymphomas. These stromal immune cells may also serve as useful markers for patient risk stratification beyond the traditional clinical IPI algorithm.

An additional novel contribution of this study is the preliminary evidence that host immune history may play a role in shaping the tumor microenvironment. We showed that patients with prior AIDS-defining conditions, primarily opportunistic infections, and low circulating CD4+ cell count at DLBCL diagnosis tended to have reduced density of stromal CD4+ T cells and increased macrophage infiltration, respectively. Several previous studies, including our own work, have shown that circulating CD4+ cell count and/or prior AIDS are independent prognostic predictors in patients with HIV-related lymphoma [36,37]. Our data suggest that one of the potential mechanisms of the prognostic impact of these HIV disease factors may be though modifying the tumor microenvironment. If this is confirmed, then the importance of maintaining circulating CD4+ cell count would not only be relevant to preventing the development of HIV-related lymphomas, but also would promote a better prognosis in those who develop such malignancies.

EBV infection of tumor cells is seen in about one-third of the contemporary HIV-related DLBCL cases. Recent data suggest that EBV-mediated pathogenesis involved interaction with the tumor microenvironment [38]. Thus, we hypothesized that EBV-positive DLBCLs recruited a particular subset of immune cells. However, contrary to our hypothesis, no clear pattern of stromal immune cells was seen in DLBCLs positive for EBV infection. Although a statistically significant difference was found for Treg cells, the degree of the difference appears unlikely to be clinically meaningful. LMP1 expression was not associated with stromal CD4+ T cells or Treg cells. However, only 22 patients with EBV-positive DLBCL were included in this comparison; thus, the LMP1 analysis should be considered exploratory. A previous study that examined the presence of EBV infection in pediatric patients with DLBCL also found no alteration of the T-cell subsets in EBV-positive tumors [39]. However, these results do not exclude the possibility that the presence of EBV may adversely affect the function of these T cells. In fact, studies suggest that EBV may impair the function of cytotoxic T cells and contribute to decreased immune surveillance [40].

Our results provide some evidence for the bidirectional interactions between the tumor and the microenvironment, as we observed significant correlations between certain molecular tumor characteristics and stromal immune cells. We examined the expression of five oncogenic proteins that are known to play a central role in lymphoma development and progression; three of these are correlated with the stromal density of Treg cells. We also observed a positive association between p53 expression and infiltrating CD4+ T cells population. It has been proposed that functional p53 protein is involved in the induction of antitumor CD4+ T-cell response via expression of major histocompatibility complex class-II antigens, and the absence of p53 may reduce the induction of CD4+ T-cell activity [41]. Another potential explanation to the association we observed might be that the p53 peptides presented to immune cells may serve as a potential mechanism for triggering antitumor immune response [42]. It is also possible that some of the correlations we observed simply reflected certain microenvironment characteristics that simultaneously promote/inhibit biologic processes in both the tumor and the stromal. For example, proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α have been shown to trigger the expression of BCL6 in multiple myeloma cells [43]. Interleukin-6 is known to be a negative regulator for Treg cells [44]. It is thus possible that the inverse association observed between tumor BCL6 expression and infiltrating Treg cells may be due to a proinflammatory cytokine environment. Our study, however, was not designed to address if it is the specific tumor characteristics that recruit (or through de-novo generation) the Treg cells, or whether the specific stromal immunity that induces or promotes the expression of certain oncogenic proteins, or both. To date, knowledge on the biologic processes that underlie the interplay between tumor and its microenvironment remains limited. Additional laboratory and clinical studies are needed to further elucidate the interaction between tumor, tissue and system level factors.

A potential limitation of this study was the limited sample size for certain subgroup comparisons. This limitation in sample size may also explain the lack of statistical significance between the density of stromal Treg cells and macrophages with survival outcomes. However, our study is based on a well defined cohort of patients with HIV-related DLBCL from the ART era that is among the largest reported in the literature. Another limitation is that we did not distinguish the subpopulations of stromal CD4+ T cells and tumor-associated macrophages, and we did not measure cytokine production or other factors that may affect immune cell functions.

In conclusion, we found that the composition of stromal immune cells in HIV-related DLBCL was significantly different from that found in HIV-unrelated DLBCL, and were consistent with a pattern associated with poorer prognosis. We also determined the prognostic significance of stromal CD8+ T cells in HIV-related lymphomas in a clinical population. We found that host HIV disease history, including low circulating CD4+ cell count and prior AIDS diagnosis were associated with the composition of tumor microenvironment. As such, early initiation of ART and maintenance of immune function may have an impact not only on the incidence of lymphomas but also on disease prognosis. These data suggest that antitumor immunity plays an important role in disease progression and treatment outcomes in HIV-infected patients, but it can be compromised. Patient management strategies directed at restoring immunosurveillance at the tumor microenvironment level may thus hold promise for treating HIV-related lymphomas.

Back to Top | Article Outline

Acknowledgements

The authors would like to thank Ms Wendy Leyden for programming support, and Ms Courtney Ellis and Ms Michelle McGuire for project management support.

Authors’ contribution: C.C. conceptualized the study. C.C., M.J.S. and J.S. led the study design. C.C. and M.J.S. led the collection of clinical data. J.S. and H.D.Z. performed pathology review and diagnosis confirmation. J.S. and B.C. performed laboratory assays and tumor marker data collection. L.X. and L.C. performed data cleaning, editing and statistical analyses. O.M., D.I.A. and R.H. assisted with the study design, data collection and result interpretation. All authors have critically reviewed and edited the article.

Source of funding: This work is supported by National Cancer Institute grant R01CA134234–01 Prognostic Markers for HIV-Positive Diffuse Large B-Cell Lymphoma.

Back to Top | Article Outline

Conflicts of interest

There are no conflicts of interest.

Back to Top | Article Outline

References

1. Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 2008; 18:372–377.
2. Bizzarri M, Cucina A. Tumor and the microenvironment: a chance to reframe the paradigm of carcinogenesis?. Biomed Res Int 2014; 2014:934038.
3. Coupland SE. The challenge of the microenvironment in B-cell lymphomas. Histopathology 2011; 58:69–80.
4. Galand C, Donnou S, Molina TJ, Fridman WH, Fisson S, Sautes-Fridman C. Influence of tumor location on the composition of immune infiltrate and its impact on patient survival. lessons from DCBCL and animal models. Front Immunol 2012; 3:98.
5. Scott DW, Steidl C. The classical Hodgkin lymphoma tumor microenvironment: macrophages and gene expression-based modeling. Hematology Am Soc Hematol Educ Program 2014; 2014:144–150.
6. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359:2313–2323.
7. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346:1937–1947.
8. Rimsza LM, Roberts RA, Miller TP, Unger JM, LeBlanc M, Braziel RM, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood 2004; 103:4251–4258.
9. Chang KC, Huang GC, Jones D, Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 2007; 13:6666–6672.
10. Hasselblom S, Sigurdadottir M, Hansson U, Nilsson-Ehle H, Ridell B, Andersson PO. The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma. Br J Haematol 2007; 137:364–373.
11. Lippman SM, Spier CM, Miller TP, Slymen DJ, Rybski JA, Grogan TM. Tumor-infiltrating T-lymphocytes in B-cell diffuse large cell lymphoma related to disease course. Mod Pathol 1990; 3:361–367.
12. Wang W, Kardosh A, Su YS, Schonthal AH, Chen TC. Efficacy of celecoxib in the treatment of CNS lymphomas: an in vivo model. Neurosurg Focus 2006; 21:E14.
13. Mineo JF, Scheffer A, Karkoutly C, Nouvel L, Kerdraon O, Trauet J, et al. Using human CD20-transfected murine lymphomatous B cells to evaluate the efficacy of intravitreal and intracerebral rituximab injections in mice. Invest Ophthalmol Vis Sci 2008; 49:4738–4745.
14. Liapis K, Clear A, Owen A, Coutinho R, Greaves P, Lee AM, et al. The microenvironment of AIDS-related diffuse large B-cell lymphoma provides insight into the pathophysiology and indicates possible therapeutic strategies. Blood 2013; 122:424–433.
15. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103:275–282.
16. Chao C, Silverberg MJ, Martinez-Maza O, Chi M, Abrams DI, Haque R, et al. Epstein-Barr virus infection and expression of B-cell oncogenic markers in HIV-related diffuse large B-cell lymphoma. Clin Cancer Res 2012; 18:4702–4712.
17. Rossi G, Donisi A, Casari S, Re A, Cadeo G, Carosi G. The International Prognostic Index can be used as a guide to treatment decisions regarding patients with human immunodeficiency virus-related systemic non-Hodgkin lymphoma. Cancer 1999; 86:2391–2397.
18. Mounier N, Spina M, Gabarre J, Raphael M, Rizzardini G, Golfier JB, et al. AIDS-related non-Hodgkin lymphoma: final analysis of 485 patients treated with risk-adapted intensive chemotherapy. Blood 2006; 107:3832–3840.
19. Salloum RG, Smith TJ, Jensen GA, Lafata JE. Using claims-based measures to predict performance status score in patients with lung cancer. Cancer 2011; 117:1038–1048.
20. Rubin DB. Multiple imputation for nonresponse in surveys. Hoboken, NJ: John Wiley & Sons Inc; 1987.
21. Afshar-Sterle S, Zotos D, Bernard NJ, Scherger AK, Rodling L, Alsop AE, et al. Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nat Med 2014; 20:283–290.
22. Dasgupta A, Saxena R. Regulatory T cells: a review. Natl Med J India 2012; 25:341–351.
23. Nam SJ, Go H, Paik JH, Kim TM, Heo DS, Kim CW, et al. An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk Lymphoma 2014; 55:2466–2476.
24. Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 2008; 93:193–200.
25. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 2006; 108:2957–2964.
26. Marchesi F, Cirillo M, Bianchi A, Gately M, Olimpieri OM, Cerchiara E, et al. High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol Oncol 2014; 33:110–112.
27. Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol 2008; 26:440–446.
28. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014; 5:75.
29. Keane C, Gill D, Vari F, Cross D, Griffiths L, Gandhi M. CD4(+) tumor infiltrating lymphocytes are prognostic and independent of R-IPI in patients with DLBCL receiving R-CHOP chemo-immunotherapy. Am J Hematol 2013; 88:273–276.
30. Wahlin BE, Sundstrom C, Holte H, Hagberg H, Erlanson M, Nilsson-Ehle H, et al. T cells in tumors and blood predict outcome in follicular lymphoma treated with rituximab. Clin Cancer Res 2011; 17:4136–4144.
31. Grube M, Rezvani K, Wiestner A, Fujiwara H, Sconocchia G, Melenhorst JJ, et al. Autoreactive, cytotoxic T lymphocytes specific for peptides derived from normal B-cell differentiation antigens in healthy individuals and patients with B-cell malignancies. Clin Cancer Res 2004; 10:1047–1056.
32. Rajnai H, Heyning FH, Koens L, Sebestyen A, Andrikovics H, Hogendoorn PC, et al. The density of CD8+ T-cell infiltration and expression of BCL2 predicts outcome of primary diffuse large B-cell lymphoma of bone. Virchows Arch 2014; 464:229–239.
33. Laurent C, Muller S, Do C, Al-Saati T, Allart S, Larocca LM, et al. Distribution, function, and prognostic value of cytotoxic T lymphocytes in follicular lymphoma: a 3-D tissue-imaging study. Blood 2011; 118:5371–5379.
34. Alvaro T, Lejeune M, Salvado MT, Lopez C, Jaen J, Bosch R, et al. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 2006; 24:5350–5357.
35. Stopeck AT, Gessner A, Miller TP, Hersh EM, Johnson CS, Cui H, et al. Loss of B7.2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma. Clin Cancer Res 2000; 6:3904–3909.
36. Bower M, Gazzard B, Mandalia S, Newsom-Davis T, Thirlwell C, Dhillon T, et al. A prognostic index for systemic AIDS-related non-Hodgkin lymphoma treated in the era of highly active antiretroviral therapy. Ann Intern Med 2005; 143:265–273.
37. Robotin MC, Law MG, Milliken S, Goldstein D, Garsia RJ, Dolan GM, et al. Clinical features and predictors of survival of AIDS-related non-Hodgkin's lymphoma in a population-based case series in Sydney, Australia. HIV Med 2004; 5:377–384.
38. Cader FZ, Vockerodt M, Bose S, Nagy E, Brundler MA, Kearns P, et al. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 2013; 122:4237–4245.
39. Cohen M, De Matteo E, Narbaitz M, Carreno FA, Preciado MV, Chabay PA. Epstein-Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: analysis of viral role in tumor microenvironment. Int J Cancer 2013; 132:1572–1580.
40. Liu WL, Lin YH, Xiao H, Xing S, Chen H, Chi PD, et al. Epstein-Barr Virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways: impairment in T cell functions. J Virol 2014; 88:6660–6671.
41. Zeki K, Tanaka Y, Morimoto I, Nishimura Y, Kimura A, Yamashita U, et al. Induction of expression of MHC-class-II antigen on human thyroid carcinoma by wild-type p53. Int J Cancer 1998; 75:391–395.
42. Albers AE, Ferris RL, Kim GG, Chikamatsu K, DeLeo AB, Whiteside TL. Immune responses to p53 in patients with cancer: enrichment in tetramer+ p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol Immunother 2005; 54:1072–1081.
43. Hideshima T, Mitsiades C, Ikeda H, Chauhan D, Raje N, Gorgun G, et al. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood 2010; 115:3772–3775.
44. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010; 40:1830–1835.
Keywords:

diffuse large B-cell lymphoma; HIV; prognosis; stromal; tumor microenvironment

Copyright © 2015 Wolters Kluwer Health, Inc.