To date, no research has examined muscle activation during exercise on the elliptical trainer. However, many exercisers use the device to train specific muscles by altering resistance and direction of travel. A new prototype recently introduced to the market allows the exerciser to alter stride length, which may provide more flexibility in targeting specific muscles for toning.
PURPOSE:
To evaluate the effects of stride length (SL) and direction of travel on lower extremity muscle activation during elliptical trainer exercise.
METHODS:
Ten males volunteered as subjects (Age: 24 ± 4 yrs; Height: 175.5 ± 7.9 cm; Weight: 84.1 ± 24.2 kg). Each subject exercised at 5 stride lengths (6.7, 7.5, 8.3, 9.1, and 9.8 cm) in a forward (F) and backward (B) direction for 1 min. Direction was randomized, and SL within direction was randomized. EMG activity of the gluteus maximus (GM), vastus lateralis (VL), and biceps femoris (BF) was sampled continuously at 500 Hz for 6 consecutive strides at the end of each minute of exercise. A two-way repeated measures ANOVA (Direction X Stride Length) was calculated to determine differences in peak and average EMG activity across direction and SL.
RESULTS:
No significant differences were found for muscle activation across SL, although trends for increased peak BF EMG (+15% overall) and decreased peak VL EMG (−16% overall) were observed with increasing SL in the forward direction. Significant differences (p < .05) were found in peak and average GM and VL activation across directions. Muscle activation was greater for GM and less for VL in the forward direction (VLFpeak: 98 ± 34 μV; VLBpeak: 139 ± 61 μV; VLFavg: 16 ± 12 μV; VLBavg: 24 ± 18 μV; GMFpeak: 65 ± 30 μV; GMBpeak: 27 ± 24 μV; GMFavg: 7 ± 5 μV; GMBavg: 2 ± 3 μV.
CONCLUSION:
These results suggest that manipulation of direction and stride length during elliptical trainer exercise may promote differential use of lower extremity muscles. Supported, in part, by Sport Art, Inc.