Share this article on:

Resistance Training Predicts 6-yr Body Composition Change in Postmenopausal Women


Medicine & Science in Sports & Exercise: July 2010 - Volume 42 - Issue 7 - p 1286-1295
doi: 10.1249/MSS.0b013e3181ca8115
BASIC SCIENCES: Contrasting Perspectives

Purpose: The aim of this study was to examine the association of exercise frequency (ExFreq) and volume (total weight lifted by military press and squats (SQ)) with change in body composition among postmenopausal women participating in a progressive resistance training study.

Methods: Previously, sedentary women (n = 122, age = 56.3 ± 4.3 yr) were followed for 6 yr. At 6 yr, there were women who had been randomly assigned to resistance training at baseline (n = 65) controls that were permitted to cross over to the exercise program at 1 yr (n = 32) and 25 true controls. Exercisers and crossovers directed to perform eight core exercises for two sets of eight repetitions at 70%-80% of one-repetition maximum, three times weekly, plus progressive weight bearing, stretching, and balance. Body weight and fat were measured at baseline and annually using anthropometry and dual-energy x-ray absorptiometry.

Results: Average change in body weight and total body fat were 0.83 ± 5.39 and 0.64 ± 4.95 kg at 6 yr, respectively. In multiple linear regression, ExFreq, military press, and SQ were significantly inversely associated with change in body weight (standardized beta coefficient (SBC) = −0.22 to −0.28, P < 0.01), fat (SBC = −0.25 to −0.33, P < 0.01), and trunk fat (SBC = −0.20 to −0.31, P < 0.03) after adjusting for age, years on hormone therapy, change in lean soft tissue, baseline body composition, and baseline habitual exercise. The lowest tertile of SQ (equivalent to 2.5% attendance) demonstrated significant gain in weight, fat, and trunk fat over 6 yr (P < 0.004), whereas the highest tertile SQ (equivalent to 64% attendance) was able to maintain their weight, total, and regional fat.

Conclusions: We conclude that resistance training is a viable long-term method to prevent weight gain and deleterious changes in body composition in postmenopausal women.

1Arizona Cancer Center, University of Arizona, Tucson, AZ; 2Department of Physiology, University of Arizona, Tucson, AZ; and 3Department of Nutrition, University of Arizona, Tucson, AZ

Address for correspondence: Jennifer W. Bea, Ph.D., Arizona Cancer Center, 1515 N. Campbell Ave., PO Box 245024, Tucson, AZ 85724-5024; E-mail:

Submitted for publication June 2009.

Accepted for publication November 2009.

The dramatic rise in the prevalence of overweight and obesity in the United States from less than half to two-thirds over the last 30 yr is alarming, and there is little dispute over the medical implications, that is, heart disease, type 2 diabetes, and certain cancers (9,10). The impact on health care costs will be enormous. Estimates in 2000 put the cost at $117 billion annually (47), and the costs will rise with an increase in obesity prevalence as "baby boomers" and overweight children become older.

Lifestyle factors, such as lack of portion control, high accessibility of food, and lack of physical activity, as well as many other understudied lifestyle factors, such as sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, and others, have been associated with increasing weight in the United States and around the world (28). Weight gain in postmenopausal women is of particular interest because of shifts in adipose distribution after menopause (i.e., increased deposition of highly inflammatory abdominal fat with loss of endogenous estradiol) (29,42) and age-related reductions in physical activity (8,37,43). Midlife women may gain an average of 0.7 kg·yr−1 and 0.7 cm in waist circumference each year (44). In addition, it has been estimated that lack of physical activity and excess weight are responsible for 31% of the overall mortality in women (22).

Although weight loss is often the focus in postmenopausal women and others, barriers to program initiation and maintenance exist (32). In addition, high levels of program attrition and weight regain estimated at an average of 77% of the total initial weight lost within 4-5 yr (2,31) are significant issues in the battle against the obesity epidemic. Within this context, simple prevention of weight gain throughout the lifespan becomes an increasingly attractive strategy for health promotion and disease prevention.

Exercise is a well-accepted contributor to weight loss with caloric restriction and postweight loss weight maintenance (10,46). Evidence supports the theory that aerobic exercise is especially effective in controlling weight (10,14), but little is known about the effects of resistance training on long-term weight management. Theoretically, resistance training may contribute to increased energy expenditure during activities of daily living as well as intentional physical activity because of increased energy burning muscle mass and increased ease of physical activity (23).

The Bone Estrogen Strength Training (BEST) study, including postmenopausal women blocked by hormone therapy (HT) versus no HT and randomized to exercise (EX) or no exercise NEX), was designed to examine the effects of resistance training on bone mineral density (BMD) in postmenopausal women (11,18,34,45) but also provided an opportunity to examine the effects of training on soft tissue changes and weight maintenance in a group of middle-aged and older women. In a secondary analysis, we tested the hypothesis that women who maintained a higher frequency or volume of training over 6 yr would prevent weight gain and slow fat deposition whereas those with a lower frequency of training would gain weight.

Back to Top | Article Outline


Study design.

The BEST study was a block-randomized clinical trial designed to examine the relationship of resistance training exercise to BMD in early postmenopausal women (18). Women were randomized to either exercise or control conditions within groups stratified by HT. At the end of the first year of intervention (n = 266 completers of 1 yr trial), controls were permitted to begin or to "cross over to" the prescribed exercise regimen (crossovers) and were followed annually for body composition (11). The BEST study was reviewed and approved by the University of Arizona Human Subjects Review Committee, and written informed consent was obtained from all subjects before study entry.

For the present study, 122 women (45.9% of first-year completers) who completed baseline and at least the sixth year of annual testing were assessed for changes in weight, total body fat, regional fat, and lean soft tissue (LST). All participants randomized to exercise and crossovers recorded resistance training exercises in daily logs. Six-year controls (n = 25) were assigned an exercise frequency (ExFreq) of 0.0%.

Back to Top | Article Outline

Recruitment and entry criteria.

Subjects were recruited using selected zip codes for direct mailing, medical clinics, community organizations, and media advertisement. Initial telephone screening was followed by small group meetings during which study requirements were explained, informed consent procured, and initial demographic data collected. Inclusion criteria were as follows: 40-65 yr of age; surgical or natural menopause (3.0-10.9 yr); body mass index (BMI) greater than 19.0 kg·m−2 and less than 33.0 kg·m−2; nonsmoking; no history of osteoporotic fracture and an initial BMD greater than z-score of -3.0; undergoing hormone therapy (HT) (1.0-5.9 yr) or not undergoing HT (>1 yr); no weight gain or loss greater than 13.6 kg (30 lb) in the previous year; free of cancer and cancer treatment for the last 5 yr (excluding skin cancer); not using BMD-altering medications, beta-blockers, or steroids; dietary calcium intake >300 mg·d−1; performing less than 120 min of low intensity; low-impact exercise per week; and no weightlifting or similar physical activity. Participants agreed to be randomized to exercise or control and to continue their usual dietary practices, to maintain their HT status, and to take daily calcium citrate supplements for the duration of the intervention period. Six years of data were accumulated from 1995 to 2004 in six staggered cohorts.

Back to Top | Article Outline

Hormone therapy.

Women using HT were asked to continue to follow the regimen prescribed by their physicians and to report any changes every year. A variety of hormone combinations were used; at baseline, most women took estrogen plus progesterone (80%), oral estrogen (10%), or estrogen and/or progesterone by patch (10%).

Back to Top | Article Outline


At baseline and 6 yr, standing height and weight were measured with participants wearing lightweight clothing and no shoes. Height (cm) was measured to the nearest 0.1 cm at maximal inhalation with a Schorr measuring board. Weight (kg) was measured using a calibrated scale (SECA, model 770, Hamburg, Germany) accurate to 0.1 kg. The average height and weight from three trials was used to calculate BMI (weight (kg)/height (m2)).

Back to Top | Article Outline

Dual-energy x-ray absorptiometry.

Total and regional body composition were measured at baseline and annually thereafter by dual-energy x-ray absorptiometry (DXA) using a total-body densitometer (model DPX-L; Lunar Radiation Corporation, Madison, WI). Subject positions for total body scans were standardized according to the manufacturer's recommendations as previously described (21). Each subject was scanned twice at baseline and at follow-up, and the mean of the two measurements was used in analyses. Initial scan analysis for bone, total body fat, regional fat, and LST, including the placement of baselines distinguishing bone and soft tissue, edge detection, and regional demarcations, was done by computer algorithms (Version 1.3y; Lunar Radiation Corporation) (45). One certified technician inspected all scans at all intervals, and adjustments were made to the analysis when necessary, ensuring proper placement of cut lines for accurate delineation of regions of interest. Calibration of the densitometer was checked daily against a standard calibration block supplied by the manufacturer. Subjects were scanned in duplicate within approximately 2 wk at baseline (n = 320) and for the first 4 yr (n = 158); technical error between duplicates, which is derived from the SD of within-subject variance, was 2.04% and 2.64% at baseline (similar at 4 yr) for total body and trunk fat tissue, respectively.

Back to Top | Article Outline

Exercise program.

Participants randomized to the exercise intervention were asked to attend training sessions 3 d·wk−1, on nonconsecutive days, in one of four community facilities under the supervision of study on-site trainers. Sessions lasted 60-75 min and included warm-up (5-10 min), progressive weight bearing (25 min, walking and stair stepping with weighted vests and circuit of skipping, hopping, jumping, jogging without added weight), resistance exercises (30 min), abdominal strengthening (5 min), and stretching and balance (5 min) (34). ExFreq, weightlifting loads, sets and repetitions, steps with weighted vests, and minutes of progressive weight bearing activity were recorded in exercise logs that were monitored regularly by on-site study trainers for the intervention year. After the initial intervention year, participants were asked to continue resistance training and to record the resistance activities in their study logs; other components of the program were not specifically monitored after the first year of intervention or crossover.

Trainers had a degree (B.S. or M.S.) in exercise science or a related field and certification by a nationally recognized fitness and strength training organization. In addition, a study physical therapist further educated the trainers on the BEST program specifically. The participant-to-trainer ratio was 5:1 in the first year. Supervision was reduced during the second year, and in the third through sixth year, trainers were available at each facility one morning or afternoon per week. Crossover exercisers received supervision comparable with randomized exercisers because new cohorts with trainers were present in all facilities during the entire study.

Resistance exercises were done using free weights and machines. Eight core exercises focused on major muscles. These exercises included the seated leg press, lat (latissimus dorsi) pull down, weighted march, seated row, back extension, one-arm military press (MP; right and left), squats (SQ; wall squats initially, progressing to Smith or hack squats), and rotary torso machine.

Women completed two sets of six to eight repetitions (four to six repetitions for the MP to decrease injury to the shoulder) at 70% (2 d·wk−1) or 80% (1 d·wk−1) of the one-repetition maximum, determined by monthly testing during year 1. Further details regarding the exercise program can be found elsewhere (18,34,45).

An essential part of the intervention program was a comprehensive social support program designed to foster continued resistance training beyond the 1-yr study design and to avoid poor adherence that may bias results, as described by Metcalfe et al. (34). The program was based on social cognitive or social ecological theory constructs and encompassed a variety of interpersonal, intrapersonal, and environmental reinforcement strategies to motivate participants and to promote the high levels of retention (83%) the study experienced for the year 1 intervention. Primary components of the social cognitive constructs underlying the program included education and skill development, self-efficacy, incentive programs, social support, and modeling. Within this context, participation was based on individual improvement rather than on competition among participants and a fun, social environment that challenged the women to improve their daily exercise performance. Some examples of the intervention support programs included orientation workshops, monthly newsletters, personal best testing every 2 months to monitor progress, yearly evaluation results, goal-setting logs, personal contracts, motivational meals scheduled every 2 months, and two major promotional events held at the exercise facilities each year.

Back to Top | Article Outline

Habitual physical activity.

Baseline habitual exercise was assessed with the 7-d physical activity recall questionnaire developed by Blair et al. (5). Participants were interviewed using a standardized protocol about their time spent in moderate, hard, and very hard activities during the preceding week. Self-reported minutes of activity and METs for specific activities, classified by the compendium of physical activities by Ainsworth et al. (1), were then used to calculate the average daily energy expenditure (kcal·d−1). Participants were also asked if their recorded week included more or less than their usual amount of exercise.

Back to Top | Article Outline

Statistical analysis.

At baseline and once per year for the after 4 yr, two measurements of body composition were taken, and the mean of the two values was then used in subsequent analyses; for years 5 and 6, single DXA scans were taken to limit radiation exposure; thus, only the individual scan values were used for those years. Change in weight and body fat over 6 yr was calculated as the difference between the kilograms at the end of each of the 6-yr minus baseline kilograms.

ExFreq and volume of exercise were computed from the detailed BEST program exercise cards provided to each participant throughout the 6 yr and filled out by the women at each session. Annual frequency was expressed as a percentage by dividing the number of sessions performed by the number prescribed for that year and multiplying it by 100. ExFreq for controls was set at 0%. Crossovers were assigned 0% frequency in the first year and then their actual percent frequency for the subsequent year. The ExFreq used in analysis was the average over the entire 6 yr regardless of intervention group assignment. Volume of exercise was determined by selecting representative resistance exercises for upper and lower body (military press (MP) and squats (SQ)) and multiplying the weight lifted per repetition by the number of repetitions and by the number of sets completed for each of these exercises per session (i.e., kilograms lifted per repetition × repetitions × sets), as recorded by participants. Session totals were then summed for annual total weight lifted for MP and SQ as well as summed across all 6 yr.

Crossovers may have been affected by the date of exercise initiation because total frequency of exercise over six study years was used in this analysis, and their year 1 total was zero by design; thus, the date of exercise initiation was evaluated for exercisers versus crossovers. The results for regression models to evaluate the effect of date of exercise initiation, on the basis of data for exercisers and crossovers, demonstrated that the relationship between ExFreq and outcome variables was not altered; therefore, date of exercise initiation was not included in the final analytical models presented herein.

Four women with recorded ExFreq were missing DXA values for body composition at year 6. One woman had a scan at 5 yr and also returned for a 7th year; in this case, the average of her year 5 and year 7 results was imputed. In the other three cases, the last observation carried forward was used, imputed from year 5. Four different women were missing habitual exercise energy expenditure. The mean of the remaining 118 women was imputed in these cases. There were no discernable changes in the findings before and after imputation.

Independent t-tests were used to compare baseline characteristics between completers (n = 122) and those lost to follow-up (n = 198). Mean and SD values were calculated for the baseline characteristics and the 6-yr changes. The significance of the 6-yr changes in body weight, fat, and LST was tested using paired t-tests. Pearson correlations were conducted to assess the associations among dependent and potential independent variables to be used. ANOVA was used to test for difference in body weight, body composition, and ExFreq and volume between controls, crossovers, and exercisers with Tukey HSD post hoc test for multiple comparisons. ANCOVA was used to compare weight and body composition variables between tertiles of exercise volume (i.e., weight lifted in the SQ exercise over 6 yr). ANCOVA models produced adjusted mean and SE values adjusted for age, years taking hormones over the 6-yr period, baseline weight, baseline LST, change in LST, baseline exercise energy expenditure, and whether it was representative of more, less, or usual activity (self-report).

Variables chosen for multiple linear regression models were based on a priori hypotheses and correlations. Models were constructed for change in body weight and change in total and regional body composition as the dependent variables and mean percent 6-yr ExFreq, weight lifted in MP, and weight lifted in SQ (i.e., exercise volume for upper and lower body, respectively) as the independent variables of interest; they were adjusted for age, years on HT during the 6-yr follow-up, baseline BMI, 6-yr change in LST for models of change in total and regional fat (change in fat tissue was used for the change in LST model), baseline habitual exercise energy expenditure, and self-reported indicator as to whether the habitual physical activity was more or less than usual. Two variables were given indicator values for less or more activity in reference to usual activity.

Type 1 error was set at α = 0.05 (two-sided) for all analyses, which were conducted using the Statistical Package for the Social Sciences (Version 16.0; SPSS Inc., Chicago, IL).

Back to Top | Article Outline


Baseline characteristics.

Baseline characteristics for the participants are given in Table 1. Women were, on average, 56.3 ± 4.3 and 6.2 ± 3.4 yr postmenopausal. They had a mean weight of 67.9 ± 11.6 kg and a mean BMI of 25.5 ± 3.8 kg·m−2. Percent body fat, body fat, and LST were 38.7% ± 6.4%, 26.5 ± 8.3 kg, and 38.3 ± 4.5 kg, respectively. The average habitual exercise energy expenditure at baseline was 182.7 ± 166.9 kcal·d−1. There were no differences at baseline among controls, crossovers, and exercisers. A comparison of baseline characteristics, including age, HT use, years postmenopausal, height, weight, BMI, and total body fat, between those included in the present analysis (6-yr completers, n = 122) and those lost to follow-up (n = 198) was also performed (Table 2). Completers were highly representative of the total study population, although older (56.3 ± 4.3 vs 54.6 ± 4.9 yr, P < 0.05) and had been menopausal slightly longer (6.2 ± 3.4 vs 5.6 ± 3.0 yr, P = 0.09).





Back to Top | Article Outline

Six-year change characteristics.

Changes in body composition, ExFreq, and volume of weight lifted for representative lifts (MP for upper body and SQ for lower body) are shown in Table 3. On average, women gained 0.83 ± 5.4 kg in body weight, 0.64 ± 5.0 kg of body fat, 0.64 ± 2.60 kg trunk fat, and 0.1 ± 1.7 kg of LST by 6 yr. Over the 6 yr, the number of controls was reduced to n = 25, whereas those with some exercise totaled 97 (crossover + exercisers). Over the same period, ExFreq averaged 30.9% ± 29.8%, with significant difference between controls, crossovers, and exercisers (0.0% ± 0.0%, 24.0% ± 22.6%, 46.2% ± 28.3%, respectively, P < 0.001). Weight lifted in MP and SQ was also significantly different between controls, crossovers, and exercisers (P < 0.001). Body composition differences among the three groups were not significant; however, weight gain over the 6-yr period occurred in stepwise fashion with controls gaining the greatest amount of weight (2.1 ± 4.3 kg controls, 0.7 ± 4.4 kg crossovers, 0.4 ± 6.2 kg exercisers). Significant gains in weight and total body fat were found between baseline and 6 yr in controls only (P < 0.05).



Linear regression models evaluated ExFreq and volume of weight lifted for upper and lower body (MP and SQ, respectively) as contributors to the 6-yr change in weight, total body fat, trunk fat, arm fat, leg fat, and LST (Table 4). Models for weight and total and regional fat were robust, accounting for 12%-27% of the variance after adjusting for the following: age, baseline body composition by outcome variable, 6-yr change in LST for models of weight, total and regional fat (6-yr change in fat tissue for LST models), baseline exercise energy expenditure, and years on HT to account for hormonal influences on body composition. In contrast, the model evaluating change in LST only accounted for 4%-7% of the variance. Baseline energy expenditure and years HT did not significantly contribute to the models.



In the regression models, ExFreq and volume of weight lifted were all significant, independent predictors of body weight, total body fat, and regional body fat (trunk, arm, and leg) over 6 yr. These associations were inverse, indicating that increased training resulted in decreased weight and fat (P < 0.03 across models of weight and fat, standardized beta coefficients ranging from −0.20 to −0.33). ExFreq was less predictive of change in 6-yr LST (P = 0.13) than volume of weight lifted for upper and lower body (MP and SQ positively associated with change in LST from baseline to 6 yr, P < 0.04). From the unstandardized regression coefficient for ExFreq, we estimated the increase in LST for those who maintained 67% attendance over 6 yr (n = 24; 20% of 6-yr completers), which was equivalent to 2 d·wk−1. LST increased 0.51 kg (1.3%) for exercisers, with 67% attendance compared with 0.2 kg for all exercisers.

An additional analysis was run to depict weight, total body fat, and trunk fat by tertile of weight lifted in the SQ exercise for each of the 6 yr (Fig. 1). Weight lifted in the SQ exercise compares well with weight lifted in the MP or ExFreq; the correlation between ExFreq and MP was 0.82, between ExFreq and SQ was 0.85, and between SQ and MP was 0.87. The average percent ExFreq for the lowest, middle, and highest tertiles of weight lifted in the SQ exercise was 2.5% ± 4.2%, 25.3% ± 20.8%, and 64.2% ± 16.2%, respectively, where the highest tertile represents resistance training approximately 2 d·wk−1, each week for 6 yr.



Baseline body weights were 67.0 ± 11.6 kg for the lowest (n = 40), 68.7 ± 12.2 kg for the middle (n = 41), and 69.5 ± 11.8 kg for the highest (n = 41) tertiles of total weight lifted in SQ (P = 0.65 between groups), and over each of the 6 yr, body weight was not significantly different among tertiles of weight lifted in the SQ exercise. However, the lowest tertile of weight lifted in the SQ exercise significantly increased total body weight, total body fat, and trunk fat (P < 0.004) over 6 yr, whereas the middle tertile showed a trend toward increased trunk fat over 6 yr (P = 0.06). Only the highest tertile of weight lifted in the SQ exercise showed no difference over 6 yr for total body weight, total body fat, or trunk fat, that is, body weight and fat were maintained over 6 yr postmenopausally. Results were similar for weight lifted in MP and for ExFreq (data not presented).

Back to Top | Article Outline


The results of this secondary analysis demonstrated that frequency and volume of resistance training exercise predicted 6-yr changes in body weight and fat in postmenopausal women and supported the use of regular resistance training as a means of weight management. Although the BEST resistance training program was designed to be performed 3 d·wk−1, an average of 2 d·wk−1 for 6 yr was enough to maintain body weight, total body fat, and trunk fat. Significant weight, total, and regional body fat losses were achievable with higher frequencies of resistance training, as demonstrated by the results of regression analyses. Importantly, age-related losses of LST were also assuaged with resistance training.

Although aerobic training has been established as a strategy for weight maintenance throughout the lifespan (19), resistance training as a contributor to weight loss and maintenance is not well studied (14,19), particularly with respect to long-term weight maintenance. Some studies suggest that resistance training alone does not induce significant weight loss or enhance weight loss with caloric restriction (14). A 12-wk study comparing a very low calorie diet combined with aerobic training or resistance training for weight loss, primarily in women, favored aerobic training for weight loss and resistance training for the preservation of lean mass which blunts weight loss; both groups improved V˙O2max significantly (7). The greater weight loss experienced in the aerobic training group may be viewed as more advantageous; however, they also experienced an accompanying decrease in resting metabolic rate (RMR, P < 0.05), which potentially limits the ability to maintain lost weight (7).

Although no other studies of the size and duration of the present study could be located to confirm our weight and body composition results, a study by Schmitz et al. (40) conducted with 60 midlife women randomized to control or strength training twice per week for 39 wk demonstrated similar results. Exercisers lost significantly more fat (−0.98 kg or −1.63%) and gained significantly more fat-free mass (0.89 kg) compared with controls, without weight loss. A long-term (6 yr) follow-up assessing the association between frequency or volume of exercise and weight maintenance has not been reported.

Resistance training should also be considered important beyond its effects on weight and fat mass; preservation of LST with aging is emerging as an important area of study. Loss of skeletal muscle mass or occurrence LST s a consequence of normal aging (3,27). Low levels of skeletal muscle mass or LST can lead to impaired physical functioning (12), disability (26), and loss of independence in older age (15). In addition to the positive influence of resistance training on lean mass reported for the primary intervention year of the BEST study (45), others have shown that relatively short-term resistance training (8-24 wk) can improve lean mass in the middle-aged men and women (30,36), the elderly (16,24,25), and the frail (4). This study supports the use of long-term resistance training for LST preservation during midlife aging in women.

It is also important to consider that maintaining physical functioning may be an important factor in the protection of quality of life. Resistance training and prevention of weight gain may preserve physical function and vitality as well as decrease bodily pain in women, enhancing quality of life (17). Although measures of physical function were not conducted across treatment and control groups at 6 yr, we anticipate that future long-term studies of resistance training will show a positive association between LST preservation and physical function scores, as has been indicated in short-term trials (24,25,30).

Back to Top | Article Outline

Potential mechanisms relating long-term resistance training with weight and fat mass stabilization.

Resistance training can improve body composition independent of changes in weight or BMI and helps to preserve lean mass in the context of weight loss (14,40,45). Although somewhat controversial, it has been suggested that resistance training may be an effective strategy for weight maintenance in postmenopausal women because of its positive effects on RMR (23,38). In the study by Bryner et al. (7), a significant increase in RMR, in spite of weight loss, was demonstrated in the resistance trained group compared with the aerobically trained group (7). Similarly, in another study, postmenopausal women who completed 16 wk of resistance training demonstrated increased fat-free mass and RMR, with and without weight loss (38). Although we did not measure RMR, we estimated the increase in LST for those who maintained 67% attendance over 6 yr (2 d·wk−1) (from the unstandardized regression coefficient for ExFreq, n = 24; 20% of 6-yr completers) to be increased by 0.51 kg (1.3%), which would equate to roughly to a 10-kcal increase in RMR, as indicated by cross-sectional studies (1 kg increase = 21 kcal basal metabolic rate) (33). This small potential increase in our population of most compliant exercisers may have contributed somewhat to the weight maintenance observed in this group, particularly because the increased caloric burning capacity may have been enhanced by as much at 3650 kcal·yr−1.

On the other hand, Hunter and Byrne (23) have shown that 77% of the difference in weight (measured by DXA) between gainers and maintainers, 1 yr after weight loss, was accounted for by activity-related energy expenditure. Muscle oxidative capacity, measured by 31P MRS, and quadriceps strength were also independently related to weight maintenance during that period. On the basis of these findings, Hunter and Byrne (23) suggested that such changes in muscle may lead to increased ease of physical activity and thus higher levels of physical activity (23) contributing to weight maintenance.

Our resistance training program significantly improved muscle strength at all sites (P < 0.001) and total body lean mass (P < 0.05 between EX and NEX, within HT; P < 0.001 between EX and NEX within NHT) after the primary intervention (1 yr) (45). Although muscle metabolic economy and strength at 6 yr were not measured, our results reinforced the hypothesis proposed by Hunter and Byrne (23), which improvement in strength and lean mass supports weight maintenance. Research into the potential mechanisms of resistance training's role in weight maintenance is largely based on short-term results. Long-term studies (3-5 yr) examining mechanisms would contribute substantially to this field.

We may postulate that the combination of increased lean mass and greater ease of activity, lending themselves to more activity, would not only have an effect on overall energy expenditure but may also contribute to decreased reliance on insulin for glucose homeostasis. Glucose transport into cells should occur to a greater extent via exercise-induced translocation of GLUT4 proteins independent of insulin in those training versus those not training (41). It is also known that training increases sensitivity of insulin-mediated glucose uptake in muscle by local mechanisms, at least with aerobic training (13), and such mechanisms may also be in play with an emphasis on resistance training. These combined reasons for decreased reliance on insulin may lower its secretion and temper the anabolic effects on fat mass, which may act as a moderator of overall body weight. We know that resistance training can improve insulin sensitivity, which can be partially but not entirely attributed to changes in body composition (39). Thus, conversely, it is possible that insulin sensitivity improvements, described above, may also partially contribute to body composition stabilization.

Other potential mechanisms relating resistance training to weight and body fat maintenance may include changes in adipokines with training. Both adiponectin and leptin are associated with changes in body composition as well as metabolism. Although not tested in this study, limited evidence suggests that resistance training may have an effect on these biomarkers. However, change in leptin and adiponectin may vary with intensity of training and should be adjusted by changes in body composition. In addition, studies of chronic resistance training effects on leptin and adiponectin greater than 1 yr have not been conducted, most are less than 6 months, and downstream effects of these adipokines related to training have yet to be elucidated (6). These and other proposed mechanisms that may be involved in long-term weight and body fat stabilization with resistance training require new long-term studies with substantial repeated measures and biosample collection at least annually.

Back to Top | Article Outline


Long-term intervention studies carry with them several burdens. One challenge in this 6-yr behavioral intervention was participant retention. Retention in our first year was high (83%) (18) while we conducted a robust intervention support program on the basis of social cognitive/social ecological theory constructs, encompassing a variety of interpersonal, intrapersonal, and environmental reinforcement strategies to motivate participants and to promote retention. Many women continued to participate in the support program after year 1, and because recruitment continued over a 4-yr period, all exercising women were encouraged to continue to exercise and to attend the social support events. Allowing controls to cross over to exercise may have ameliorated some attrition as well. Nevertheless, higher attrition occurred in later years, perhaps because trainers were less available to work with participants after the initial 2 yr.

Program attrition left us with 45.9% of the sample of 1-yr completers available for inclusion in this analysis of 6 yr of follow-up. However, there was enough range in frequency of resistance training and change in weight to capture differences in exercise association with changes in body composition despite analyzing less than half of our original sample.

Throughout the 6 yr, participants were asked not to alter their diets; however, an evaluation of dietary intake out to 6 yr is not available. Habitual activity may have varied as well. Although initial measures of these factors were included in regression models, the analysis was limited somewhat by the lack of a measurement of diet and habitual activity over time. The demonstration that resistance training volume and attendance were associated with weight and body composition does not eliminate the possibility that some of the effects seen here may be due to other habitual physical activities or aerobic exercise. Certainly, tracking changes in dietary and overall exercise patterns would be helpful in future research.

Although years on HT were not a significant contributor to the regression models evaluating changes in body composition and weight, it is possible that hormone levels may have influenced changes in weight and body composition over 6 yr. Blood samples were not available beyond year 1 to evaluate circulating levels of estrogen and progesterone but would be recommended in future studies.

Back to Top | Article Outline


In spite of the limitations inherent in a long-term study, results were significant, and this study is one of the first to show the association of resistance training and prevention of weight gain. In light of the positive effects of resistance training on BMD, muscle function, and lean mass (18) and its potential for contributing to the prevention of osteoporosis and debilitating fractures, resistance training for weight loss and maintenance is particularly attractive for overall chronic disease prevention in postmenopausal women.

Beyond the present study results, it is important to assert that comprehensive physical activity programs (stretching, balance, and aerobic and resistance training combined), as indicated by the American College of Sports Medicine or by the American Heart Association guidelines for physical activity (35) intended to address overall health benefits, not weight management alone, should be the goal. However, few of the recommendations in the above guidelines are based on long-term studies, and the public at large is not currently meeting these physical activity goals. We have shown that there may be some benefit from 2 d·wk−1 of resistance training and perhaps greater benefit if the population meets the American College of Sports Medicine guidelines. More long-term studies are needed to evaluate frequency of training relative to various health outcomes.

Back to Top | Article Outline


The present study demonstrated that higher levels of weight bearing physical activity over the long term are associated with stabilization of total and central adiposity, preservation of lean mass, and weight maintenance. Including resistance training along with aerobic exercise may allow for better tailoring of interventions and long-term adherence (20). In addition, because both aerobic and resistance training have been shown to diminish risk factors for cardiovascular disease and diabetes, it is important to present resistance training as an option for improved health outcomes independent of weight loss (14).

This study was supported by the National Institutes of Health grant No. AR39559. Calcium supplements were donated by Mission Pharmacal. The authors thank the funding sources and the participants and the staff of the Bone Estrogen and Strength Training Study.

The supporters of this research will not benefit from the results of the present study. In addition, publication of the results in the present study does not constitute endorsement by the American College of Sports Medicine.

Back to Top | Article Outline


1. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 suppl):S498-516.
2. Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74(5):579-84.
3. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437-48.
4. Binder EF, Yarasheski KE, Steger-May K, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci. 2005;60(11):1425-31.
5. Blair SN, Haskell WL, Ho P, et al. Assessment of habitual physical activity by a seven-day recall in a community survey and controlled experiments. Am J Epidemiol. 1985;122(5):794-804.
6. Bouassida A, Chamari K, Zaouali M, Feki Y, Zbidi A, Tabka Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med. 2008; E-pub ahead of print.
7. Bryner RW, Ullrich IH, Sauers J, et al. Effects of resistance vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Coll Nutr. 1999;18(2):115-21.
8. Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med Sci Sports Exerc. 2000;32(9):1601-9.
9. Center for Disease Control and Prevention Web site [Internet]. Atlanta (GA): Defining overweight and obesity; [cited May 20, 2004]. Available from:
10. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults-the evidence report. National Institutes of Health. Obes Res. 1998;6(2 suppl):51S-209.
11. Cussler EC, Going SB, Houtkooper LB, et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int. 2005;16(12):2129-41.
12. Davison KK, Ford ES, Cogswell ME, Dietz WH. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc. 2002;50(11):1802-9.
13. Dela F, Mikines KJ, von Linstow M, Secher NH, Galbo H. Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol. 1992;263(6 pt 1):E1134-43.
14. Donnelly JE, Smith B, Jacobsen DJ, et al. The role of exercise for weight loss and maintenance. Best Pract Res Clin Gastroenterol. 2004;18(6):1009-29.
15. Fantin F, Di Francesco V, Fontana G, et al. Longitudinal body composition changes in old men and women: interrelationships with worsening disability. J Gerontol A Biol Sci Med Sci. 2007;62(12):1375-81.
16. Fielding RA. The role of progressive resistance training and nutrition in the preservation of lean body mass in the elderly. J Am Coll Nutr. 1995;14(6):587-94.
17. Fine JT, Colditz GA, Coakley EH, et al. A prospective study of weight change and health-related quality of life in women. JAMA. 1999;282(22):2136-42.
18. Going S, Lohman T, Houtkooper L, et al. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003;14(8):637-43.
19. Goldberg JH, King AC. Physical activity and weight management across the lifespan. Annu Rev Public Health. 2007;28:145-70.
20. Hills AP, Byrne NM. Exercise prescription for weight management. Proc Nutr Soc. 1998;57(1):93-103.
21. Houtkooper LB, Ritenbaugh C, Aickin M, et al. Nutrients, body composition and exercise are related to change in bone mineral density in premenopausal women. J Nutr. 1995;125(5):1229-37.
22. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;351(26):2694-703.
23. Hunter GR, Byrne NM. Physical activity and muscle function but not resting energy expenditure impact on weight gain. J Strength Cond Res. 2005;19(1):225-30.
24. Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training on older adults. Sports Med. 2004;34(5):329-48.
25. Hurley BF, Roth SM. Strength training in the elderly: effects on risk factors for age-related diseases. Sports Med. 2000;30(4):249-68.
26. Janssen I. Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc. 2006;54(1):56-62.
27. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889-96.
28. Keith SW, Redden DT, Katzmarzyk PT, et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes (Lond). 2006;30(11):1585-94.
29. Lee CG, Carr MC, Murdoch SJ, et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab. 2009;94(4):1104-10.
30. Levinger I, Goodman C, Hare DL, Jerums G, Selig S. The effect of resistance training on functional capacity and quality of life in individuals with high and low numbers of metabolic risk factors. Diabetes Care. 2007;30(9):2205-10.
31. Lohman TG, Wright JA. Maintenance of long-term weight loss: future directions. Quest. 2004;56:105-19.
32. Mauro M, Taylor V, Wharton S, Sharma AM. Barriers to obesity treatment. Eur J Intern Med. 2008;19(3):173-80.
33. McArdle WD, Katch FI, Katch VL. Exercise Physiology: Energy, Nutrition, and Human Performance. 6th ed. Baltimore (MD): Lippincott, Williams, & Wilkins; 2007. p. 198-9.
34. Metcalfe L, Lohman T, Going S, et al. Postmenopausal women and exercise for the prevention of osteoporosis: the Bone Estrogen, and Strength Training (BEST) study. ACSM's Health Fit J. 2001;5(3):6-14.
35. Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435-45.
36. Nichols JF, Omizo DK, Peterson KK, Nelson KP. Efficacy of heavy-resistance training for active women over sixty: muscular strength, body composition, and program adherence. J Am Geriatr Soc. 1993;41(3):205-10.
37. Rana JS, Li TY, Manson JE, Hu FB. Adiposity compared with physical inactivity and risk of type 2 diabetes in women. Diabetes Care. 2007;30(1):53-8.
38. Ryan AS, Pratley RE, Elahi D, Goldberg AP. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol. 1995;79(3):818-23.
39. Ryan AS, Pratley RE, Goldberg AP, Elahi D. Resistive training increases insulin action in postmenopausal women. J Gerontol A Biol Sci Med Sci. 1996;51(5):M199-205.
40. Schmitz KH, Jensen MD, Kugler KC, Jeffery RW, Leon AS. Strength training for obesity prevention in midlife women. Int J Obes Relat Metab Disord. 2003;27(3):326-33.
41. Shepherd PR, Kahn BB. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341(4):248-57.
42. St-Onge M-P, Bjorntorp P. Hormonal Influences on Human Body Composition. In: Heymsfield S, Lohman T, Wang Z, Going S, editors. Human Body Composition. Champaign (IL): Human Kinetics; 2005. p. 331-40.
43. Sternfeld B, Bhat AK, Wang H, Sharp T, Quesenberry CP Jr. Menopause, physical activity, and body composition/fat distribution in midlife women. Med Sci Sports Exerc. 2005;37(7):1195-202.
44. Sternfeld B, Wang H, Quesenberry CP Jr, et al. Physical activity and changes in weight and waist circumference in midlife women: findings from the Study of Women's Health Across the Nation. Am J Epidemiol. 2004;160(9):912-22.
45. Teixeira PJ, Going SB, Houtkooper LB, et al. Resistance training in postmenopausal women with and without hormone therapy. Med Sci Sports Exerc. 2003;35(4):555-62.
46. Volek JS, Vanheest JL, Forsythe CE. Diet and exercise for weight loss: a review of current issues. Sports Med. 2005;35(1):1-9.
47. Wolf AM, Manson JE, Coldtz GA. The economic impact of overweight, obesity, and weight loss. In: Eckel R, editor. Obesity: Mechanisms and Clinical Management. Philadelphia (PA): Lippincott, Williams, & Wilkins; 2002. p. 6.


©2010The American College of Sports Medicine