Share this article on:

Use of bioelectrical impedance analysis to estimate body fluid compartments after acute variations of the body hydration level

KOULMANN, NATHALIE; JIMENEZ, CHANTAL; REGAL, DAMIEN; BOLLIET, PHILIPPE; LAUNAY, JEAN-CLAUDE; SAVOUREY, GUSTAVE; MELIN, BRUNO

Medicine & Science in Sports & Exercise: April 2000 - Volume 32 - Issue 4 - p 857-864
Special Communications: Methods

KOULMANN, N., C. JIMENEZ, D. REGAL, P. BOLLIET, J.-C. LAUNAY, G. SAVOUREY, and B. MELIN. Use of bioelectrical impedance analysis to estimate body fluid compartments after acute variations of body hydration level. Med. Sci. Sports Exerc., Vol. 32, No. 4, pp. 857–864, 2000. Physiological measurements including body mass, plasma osmolality, natremia, plasma volume measured by Evans Blue dilution, and total body water (TBW) and extracellular water (ECW) volumes estimated by bioelectrical impedance analysis (BIA) were recorded in eight healthy young Caucasian subjects before and after acute variations of their body hydration state on four separate occasions: 1) euhydration or control trial (C); 2) heat-induced dehydration of 2.8% body mass (D); 3) exercise-induced dehydration of 2.8% body mass (E); and 4) glycerol-hyperhydration (H). Heart rate, rectal and mean skin temperatures were also recorded throughout the experiment. The main result of the study is that BIA only half predicted the body water loss after exercise, although conditions were standardized (electrode placement, side of the body, limb position, posture, and ambient temperature). Differences in body temperatures cannot explain such an unexpected result, nor did the study of plasma osmolality and sodium concentration. If BIA appears to adequately predict changes in TBW after heat-induced dehydration and glycerol hyperhydration, further studies including measures of TBW and ECW by dilution tracer methods would be necessary to establish the validity of using the BIA method to measure such changes and to interpret ECW variations.

Unité de Bioénergétique et Environnement, Unité de Thermophysiologie, Centre de Recherches du Service de Santé des Armées “Emile Pardé”, 38702 La Tronche Cedex, FRANCE

Submitted for publication February 1999.

Accepted for publication June 1999.

Address for correspondence: Nathalie Koulmann, Unité de Bioénergétique et Environnement, Centre de Recherches du Service de Santé des Armées “Emile Pardé,” BP 87-24 avenue des Maquis du Grésivaudan, 38702 La Tronche Cedex, France. E-mail: brunomelin@compuserve.com.

© 2000 Lippincott Williams & Wilkins, Inc.