Skip Navigation LinksHome > March 1997 - Volume 24 - Issue 3 > Performance and Cost‐Effectiveness of Selective Screening Cr...
Sexually Transmitted Diseases:
Original Article

Performance and Cost‐Effectiveness of Selective Screening Criteria forChlamydia trachomatisInfection in Women: Implications for a National Chlamydia Control Strategy

MARRAZZO, JEANNE M. MD, MPH*; CELUM, CONNIE L. MD, MPH*; HILLIS, SUSAN D. PhD; FINE, DAVID PhD; DeLISLE, SUSAN MPH; HANDSFIELD, HUNTER H. MD

Free Access
Article Outline
Collapse Box

Author Information

*From the Department of Medicine, University of Washington, Seattle, Washington, the †Division of STD/HIV Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, ‡James Bowman Associates, and the §Seattle‐King County Department of Public Health, Seattle, Washington

The authors thank the following colleagues for contributions in the execution of this study: Dr. Ann Haddix, Dr. Walter E. Stamm, Dr. Laura Koutsky, and Dr. Debra J. Mosure for their thoughtful reviews of the manuscript; Ted Holzman, for assistance in computer‐based analyses; the University of Washington Chlamydia Laboratory; and the many participating clinics, providers, and patients who made this study possible. The authors also cite the extraordinary efforts of Dr. Joseph Lossick (deceased), who guided the Region X Chlamydia Project through its first several years.

Supported in part by NIAID STD/AIDS Research Training Grant T32 AI‐07140 (JMM) and the Centers for Disease Control and Prevention.

Reprint requests: Jeanne M. Marrazzo, MD, MPH, Broadway Clinic, Mailstop 359928, 1001 Broadway, Suite 320, Seattle, WA 98122.

Received for publication April 1, 1996, revised July 1, 1996, and accepted July 17, 1996.

Collapse Box

Abstract

Background and Objectives:: Detection of subclinical Chlamydia trachomatis infection in women is a high but costly public health priority.

Goals:: To develop and test simple selective screening criteria for chlamydia in women, to assess the contribution of cervicitis to screening criteria, and to evaluate cost‐effectiveness of selective versus universal screening.

Study Design:: Cross‐sectional study and cost‐effectiveness analysis of 11,141 family planning (FP) and 19,884 sexually transmitted diseases (STD) female clients in Washington, Oregon, Alaska, and Idaho who were universally tested for chlamydia using cell culture, direct fluorescent antibody, enzyme immunoassay, or DNA probe.

Results:: Prevalence of cervical chlamydial infection was 6.6%. Age younger than 20 years, signs of cervicitis, and report of new sex partner, two or more partners, or symptomatic partner were independent predictors of infection. Selective screening criteria consisting of age 20 years or younger or any partner‐related risk detected 74% of infections in FP clients and 94% in STD clients, and required testing 53% of FP and 77% of STD clients. Including cervicitis in the screening criteria did not substantially improve their performance. Universal screening was more cost‐effective than selective screening at chlamydia prevalences greater than 3.1% in FP clients and greater than 7% in STD clients.

Conclusions:: Age and behavioral history are as sensitive in predicting chlamydial infection as criteria that include cervicitis. Cost‐effectiveness of selective screening is strongly influenced by the criteria's sensitivity in predicting infection, which was significantly higher in STD clients. At the chlamydia prevalences in the populations studied, it would be cost saving to screen universally in FP clinics and selectively in STD clinics, the reverse of current practice in many locales.

INFECTION WITH CHLAMYDIA TRACHOMATIS is the most prevalent bacterial sexually transmitted disease (STD) in the United States, with an estimated 4,000,000 cases acquired annually.1 Sequelae of chlamydial infection, including pelvic inflammatory disease (PID), ectopic pregnancy, tubal infertility, and chronic pelvic pain, have a profound impact on women's health. The annual cost of chlamydial infection and its sequelae was estimated at $2.2 billion in 1990.2 The Centers for Disease Control and Prevention (CDC) recently allocated expanded resources for the prevention and control of chlamydial disease.3

Only 10% to 30% of reported chlamydial infections in women are symptomatic, presenting primarily as mucopurulent cervicitis or salpingitis4,5; the remainder are usually detected on routine examination or at referral for contact with an infected sex partner. Asymptomatic infection results in prolonged, untreated disease; delayed treatment increases the risk of sequelae6 and transmission to sex partners. Although universal screening has been endorsed as the best strategy for detecting most asymptomatic disease,7–9 it is costly. Instead, the usual approach is to screen selectively or empirically treat sexually active women, using such criteria as young age, cervicitis (the definition of which may be highly variable), and sexual behavior risks.10–17 Although selective screening programs have been associated with local declines in chlamydia prevalence,18,19 their performance and cost‐effectiveness across different clinical settings have not been fully assessed.

The current study had three objectives: to develop selective screening criteria for genital chlamydial infection in women from two large samples of family planning (FP) and STD clients, all of whom were universally screened for C. trachomatis; to assess the independent contribution of cervicitis to the performance of these selective screening criteria; and to evaluate the incremental cost‐effectiveness of selective versus universal screening in the FP and STD populations.

Back to Top | Article Outline

Methods

Study Population and Design

A cross‐sectional study design was used. Characteristics of the study population are shown in Table 1. The FP sample consisted of 11,141 women evaluated from October, 1989 to April, 1990 in 13 clinics throughout Washington State. The STD sample consisted of 19,884 women evaluated at 141 STD clinics in Washington, Oregon, Alaska, and Idaho (U.S. Department of Health and Human Services Region X) throughout 1993. All women undergoing pelvic examination were tested for chlamydia. Clients' age, race, and behavioral risks were recorded, including history of new sex partner in the preceding 30 days; two or more partners in the preceding 60 days; male partner with symptoms of urethritis (dysuria or discharge); and partner with other partners. Reported use of hormonal contraception or barrier contraceptives (defined as condom or diaphragm) was recorded, but temporal patterns of use were not. Current pregnancy and parity were recorded for FP but not STD clients.

Table 1
Table 1
Image Tools

Cervicitis was diagnosed if either mucopurulent cervical discharge or bleeding induced by passage of an endocervical swab was present. In STD clients, the presence of 10 or more polymorphonuclear leukocytes per high‐power field on endocervical Gram's stain was also used, in addition to either mucopurulent discharge or bleeding induced by endocervical swab. PID was diagnosed clinically if abdominal, adnexal, or cervical motion tenderness were present.

Back to Top | Article Outline
Laboratory Methods

Specimens for detection of C. trachomatis were obtained from the endocervical canal with a Dacron swab (Harwood Products Co., Guilford, ME) in FP clients and with either cytobrush or Dacron swab in STD clients. In FP clients, a direct fluorescent antibody (DFA) test was used, for which a positive test was defined by the presence of two or more elementary bodies.20 STD clients were tested using either a commercial enzyme immunoassay,21 a DNA probe test (Gen‐Probe, Inc., San Diego, CA),22 or cell culture (Table 1). Enzyme immunoassay and DNA probe tests were performed according to manufacturers' specifications, and all cell cultures were performed in a single reference laboratory as previously described.23

Back to Top | Article Outline
Data Analysis

Risk factors for chlamydial infection were analyzed by chi‐square and multivariate logistic regression using SPSS (Chicago, IL). The effect of the chlamydial diagnostic method was evaluated by including test type as a categorical variable. Independent predictors of chlamydial infection were assessed using stepwise logistic regression, with variables entered into multivariate analysis on the basis of significance (P < 0.05) in univariate analysis and practical utility as screening criteria. FP and STD clients were examined individually in the multivariate analysis; for each group, one model including age younger than 20 years and individual risk factors, and another model including age younger than 20 years and a composite variable, “any behavioral risk factor,” were assessed. Selective screening criteria developed from the multivariate models were applied separately to the FP and STD clients and to each state. Criteria sensitivity (proportion of infected women identified by the criteria) and positive predictive value (proportion of women meeting the criteria who were infected) were calculated.

Back to Top | Article Outline
Cost‐Effectiveness Analysis: General Approach

We performed an incremental cost‐effectiveness analysis to compare the strategies of universal, selective, and no screening in hypothetical cohorts of 1 million FP and STD clients.24,25 Decision analysis (Figure 1) was used to assess potential outcomes of chlamydial infection, and was modeled on a computer spreadsheet. The main outcome measure was untreated chlamydial infection of the cervix in women. The analysis took a societal perspective, incorporating both direct medical costs and indirect costs resulting from lost productivity due to consequences of untreated chlamydial infections; intangible costs were not included. Costs were measured in 1993 U.S. dollars. Our base‐case scenario assumed that either symptomatic or silent PID developed in 25% of untreated cases, that DFA was the diagnostic test used at a cost per test of $5 and sensitivity of 75%,26 and that chlamydia prevalence was 6.6%, the prevalence in our study population. Threshold analysis was used to determine the break‐even population prevalence of C. trachomatis above which universal screening would generate cost savings relative to selective screening. The effect of using a diagnostic test with an estimated sensitivity of 95% and a unit cost of $10, such as the ligase chain reaction (LCR)27–29 assay, was also considered in threshold analysis. Sensitivity analysis was done for outcomes for which definitive, prospectively derived probabilities are not available.

Fig. 1
Fig. 1
Image Tools

Direct Costs. Table 2 displays the cost estimates used. Costs for clinic visits and for the treatment of uncomplicated chlamydial infection and outpatient PID were obtained from the Region X Office of Family Planning. Costs for inpatient treatment and for sequelae of untreated infection were updated from previously published estimates2 using the medical care component of the Consumer Price Index.30 The cost of a case of chronic pelvic pain was assigned that of inpatient treatment for PID, because recent data indicate that surgery (including lysis of adhesions, hysterectomy, salpingo‐oophorectomy, and laparoscopy) is performed for 90% of women hospitalized for “chronic” PID (often defined by the presence of chronic pelvic pain).31 Costs for tubal infertility were discounted at a rate of 5% per year over 10 years, and those for ectopic pregnancy and chronic pelvic pain at a rate of 5% per year over 5 years. All other costs were assumed to occur within the first year after diagnosis of chlamydial infection.

Table 2
Table 2
Image Tools

Indirect Costs. Aggregated annual mean earnings of an individual by age and sex were used to calculate indirect costs associated with lost productivity.32 We estimated 10 nonspecified days of lost productivity for outpatient PID, 28 days for ectopic pregnancy, and 21 days each for inpatient PID, tubal infertility, and chronic pelvic pain.33 We estimated the average cost of a nonspecified day for women aged 15 to 40 years to be $80 by using the weighted annual mean earnings of labor and nonlabor (i.e., house work) for this age group ($29,068 divided by 365 days).32 For epididymitis in men aged 15 to 40 years, we estimated loss of 5 nonspecified days at $96 per day ($35,066 divided by 365 days). We did not include indirect costs of uncomplicated chlamydial infection because most of these infections in women are subclinical and do not incur productivity loss.

Conditional Probabilities. The conditional probabilities for outcomes were derived from review of the medical literature using Medline from 1985 to September, 1994 (Table 2). Estimates for the development of symptomatic PID arising from untreated cervical chlamydial infection range from 10% to 40%.4,34,35 However, “silent” PID—subclinical upper genital tract inflammation—is estimated to account for 50% to 75% of all PID, and has adverse reproductive health outcomes.36–38 We estimated that 60% of all PID was silent; this translates to 10% and 15% for the probabilities of symptomatic and silent PID, respectively, arising from untreated chlamydial infection in the base‐case scenario. Women were assumed to be at risk for ectopic pregnancy, tubal infertility, and chronic pelvic pain after either symptomatic or silent PID, although costs for the treatment of PID were assigned only to symptomatic women.31 The probability of ectopic pregnancy occurring after chlamydial PID has been estimated at 5% to 10%,38,39 whereas that of tubal infertility ranges from 8% to 40%, depending on the severity and cumulative number of PID episodes.40–44 We assumed that 25% of women with tubal infertility would seek medical evaluation.45 The probability of chronic pelvic pain used was 18% based on one prospective study of laparoscopically confirmed PID.46

The prevalence of pregnancy (10% for FP clients and 3% for STD clients) was obtained from participating clinics. Maternal cervical infection with C. trachomatis is estimated to infect 60% to 70% of infants, with neonatal conjunctivitis resulting in 25% to 50% and pneumonia in 10% to 20%.47,48 Cure rates for uncomplicated chlamydial infection with doxycycline are 95%, with estimates of compliance ranging from 70% to 100%.2 Complications of treatment, defined as either vaginal candidiasis or gastrointestinal side effects necessitating reevaluation, occur in 5%.49 For the probability of chlamydial transmission to a male sex partner, we used 0.33.50 Although a study using polymerase chain reaction (PCR) found concordant infection in 75% of male sex partners of infected women,51 the applicability of this finding to risk of chlamydial transmission is not yet clear. Symptomatic urethritis prompting clinical evaluation develops in 40% of infected men,52 with epididymitis occurring in 1%.2

Back to Top | Article Outline

Results

Characteristics of Study Subjects

As shown in Table 1, C. trachomatis prevalence among the 11,141 FP clients and 19,884 STD clients was 6.6% in both groups (95% confidence interval [CI], 6.2–7.0%). Above 20 years of age, C. trachomatis prevalence declined sharply (data not shown); therefore, we chose 20 years or younger as the cut‐off for assessment of young age as a risk. Compared to FP clients, STD clients were older, more racially diverse, more likely to report all behavioral risks and barrier contraceptive use, and were diagnosed more frequently with cervicitis.

Back to Top | Article Outline
Univariate Analysis

The results of the univariate analysis of risk factors for chlamydial infection are shown in Table 3. The strongest demographic predictor in both populations was young age (≤20 years). Neither race nor use of nonbarrier or no contraception was significantly associated with chlamydial infection in either group, nor was there a significant association between chlamydial infection and clinical diagnosis of PID in FP clients. Pregnancy and nulliparity were associated with slightly elevated risks among FP clients. All behavioral risks were significantly associated with infection in both the FP and STD groups, the strongest being report of a symptomatic male partner. Cervicitis was associated with a threefold increased risk of infection in both FP and STD clients.

Table 3
Table 3
Image Tools
Back to Top | Article Outline
Multivariate Analysis

In the multivariate model that considered risks without cervicitis, complete information was available for 10,798 (97.0%) FP and 18,936 (95.2%) STD clients. The results are shown in Table 4. Young age and behavioral risks associated with sex partners were the only independent predictors of chlamydial infection in both populations. Age 20 years or younger remained the strongest predictor of infection (odds ratio [OR] 2.3 in FP, 3.6 in STD). Reporting a symptomatic male sex partner more than doubled the risk of infection in both groups. When cervicitis was included in the model, data for analysis were complete on 10,504 FP (94%) and 16,822 STD clients (84.6%). The independent risk of infection associated with cervicitis was higher in FP clients (OR = 3.7) than in STD clients (OR = 2.7); however, this difference was not statistically significant. The ORs for the remaining variables did not change significantly (data not shown). When behavioral risks were combined into a single measure, the ORs for the remaining variables did not change significantly (data not shown). Variables that were not significantly associated with chlamydial infection included use of nonbarrier or no contraception and type of diagnostic test.

Table 4
Table 4
Image Tools
Back to Top | Article Outline
Development and Performance of Selective Screening Criteria

The prevalence of chlamydial infection in FP clients whose only risk was age 20 years or younger was 7.3%; chlamydia prevalence in women 20 years of age or younger increased to 12.1% if any behavioral risk was reported. The presence of two or more behavioral risks, regardless of age, was associated with chlamydia prevalences ranging from 13% to 33%. Nevertheless, of all FP clients with C. trachomatis, 26.1% had none of these risk factors. In the STD clients, the prevalence of infection in women whose only risk was age 20 years or younger was 7.5%; in the presence of any behavioral risk, prevalence among women aged 20 years or younger rose to 14.3%. However, in contrast to the FP population, only 6.3% of infected STD clients were older than 21 years of age or denied behavioral risk.

On the basis of these findings, the selective screening criteria chosen were age 20 years or younger and the presence of at least one behavioral risk. Use of nonbarrier or no contraceptive was not included because information describing clients' recent use of contraceptive method was not recorded, and because this variable was not independently associated with infection. As shown in Table 5, use of these criteria would require screening 52.7% of the FP clients, and 73.9% of the infections would have been detected. Adding cervicitis to the criteria increased the sensitivity from 73.9% to 78.2%. In the STD clients, 76.8% would be screened, and 93.7% of all infections detected; adding cervicitis to the criteria increased the sensitivity to 95.0%. The sensitivities of the selective screening criteria did not vary significantly by state, or according to the type of diagnostic test (data not shown).

Table 5
Table 5
Image Tools
Back to Top | Article Outline
Cost‐Effectiveness Analysis

The results of the incremental cost‐effectiveness analysis are shown in Table 6. The total cost resulting from no screening was comparable in the two populations. Compared with no screening, selective screening in either setting saved approximately $1,000 for every case prevented. However, selective screening in STD clinics cost less per case prevented and prevented more cases than in the FP setting, reflecting the superior performance of the selective screening criteria in STD clients. Proceeding from selective screening to universal screening in the STD setting incurred a small net expenditure ($53 per case prevented). In contrast, in the FP setting, universal screening was more cost‐effective than selective screening, saving an additional $667 per case prevented.

Table 6
Table 6
Image Tools

The break‐even prevalence was defined as the population prevalence of C. trachomatis above which universal screening generated cost savings relative to selective screening. In the base‐case scenario, the break‐even prevalence for FP clinics was 3.1% (95% CI, 2.7–3.5%); that for STD clinics was 6.9% (95% CI, 6.5–7.3%). The higher break‐even prevalence in STD clients reflects the higher sensitivity of the selective screening criteria in this group. Universal screening was the more cost‐effective strategy in the FP population except at very low prevalence (≤3%). Substituting a more sensitive, more costly diagnostic test (such as LCR) for DFA in the base‐case scenario had minimal effect, increasing the break‐even prevalences to 3.3% for FP and 7.3% for STD. These break‐even prevalences remained constant through the range of compliance with medical therapy assessed.

Figure 2 displays the results of the sensitivity analysis that assessed different probabilities of symptomatic or silent PID. The break‐even prevalence was most sensitive to variation in the range of PID probabilities below 15%; increasing the probability of PID above this level had little effect on the break‐even prevalence in either group.

Fig. 2
Fig. 2
Image Tools
Back to Top | Article Outline

Discussion

In this study of women attending FP and STD clinics who were universally screened for chlamydia, age 20 years or younger, behavioral risks regarding sex partners, and cervicitis were independent risk factors for genital infection with C. trachomatis. Simple selective screening criteria composed of age 20 years or younger and any behavioral risk considerably reduced the number of women screened in both groups. However, whereas only 6% of chlamydial infections would be undetected in STD clients screened according to these criteria, 26% would be missed in FP clients. The addition of cervicitis to these criteria did not substantially change their sensitivity, increasing the percentage of total disease detected by only 1% to 4%. These results indicate that women who are more likely to have chlamydial infection can be identified, and a decision to test an individual patient for C. trachomatis made before pelvic examination is performed. Diagnostic testing may be indicated when signs of cervicitis are present,1,4 but cervicitis is not a necessary criterion for screening.

The difference in the performance of selective screening criteria in FP clients compared with STD clients strongly affected their relative cost‐effectiveness. Among FP clients, in whom infection was less commonly associated with reported risk behaviors, universal screening was more cost‐effective than selective screening at all but very low disease prevalences. In STD clients, because of the superior performance of the selective screening criteria, a higher prevalence was required (≥7%) for universal screening to be the more cost‐effective strategy.

The diagnostic tests used in this study are now known to have sensitivities for the detection of cervical chlamydial infection substantially lower than those of amplified DNA tests such as LCR and PCR,28,29 and the prevalence of disease defined in our study was probably underestimated. However, break‐even prevalences for selective versus universal screening were minimally altered by the use of LCR (assuming a 95% sensitivity and a $10 unit cost), suggesting that the benefit of increased detection of C. trachomatis offset the higher cost. Amplified DNA tests may detect infection in people whose risk profiles differ from those of our subjects, which could modify selective screening criteria themselves. Nevertheless, until large‐scale studies of LCR and PCR assays can be undertaken, our study is applicable to tests that are likely to be used in many clinical settings for some time.

The risk of salpingitis associated with chlamydial infection is uncertain, but we believe that 25% (the figure used for “all PID” in our base‐case scenario) is a conservative estimate when both symptomatic and silent salpingitis are considered. In the cost‐effectiveness analysis, we varied the probability of salpingitis from 1% to 40% and demonstrated that the break‐even prevalence was minimally affected by increasing the risk beyond 15% (Figure 2). Therefore, although better data are needed on the true risk of PID and fallopian tube damage after untreated infection, refined estimates are unlikely to affect substantially cost‐effectiveness analyses of screening strategies.

Numerous other studies have also consistently identified young age, behavioral risks (usually a recent history of a new sex partner or more than one partner), and cervicitis as strong predictors of chlamydial infection in women.10–17 Although selective screening criteria based on these and other variables have been reliable in some settings,10,11 few criteria have maintained high sensitivity across different settings. For example, the criteria derived by Handsfield et al10 were sensitive (90%) and reduced the percentage of FP clients screened by about 35%, but were either insensitive or failed to significantly reduce the number of women screened when applied in other FP settings.7,12,53 Performance of selective screening criteria has also been variable in STD clinics.13,14

Our findings are in agreement with previous cost‐effectiveness analyses, which concluded that universal screening for C. trachomatis is cost‐effective in populations of women with disease prevalence above 2% to 6%.8,9,54–56 However, our study has several unique strengths. Our sample size approximates that of all prior studies combined. We assessed the independent contribution of cervicitis to disease detection, and showed that diagnosing cervicitis is not crucial to screening decisions. In the cost‐effectiveness analysis, we accounted for asymptomatic PID and included indirect costs only for outcomes that developed in women with untreated chlamydial infection. We performed sensitivity analysis for critical probabilities (namely, PID and its sequelae) and used conservative probability estimates in the basecase scenario. Our decision analysis can be easily applied to other geographic settings by modifications that incorporate local variations in demographics, costs, disease prevalence, and choice of diagnostic tests.

Our study has several limitations. First, the limited value of cervicitis as an independent predictor of chlamydial infection in this study may reflect variability in its diagnosis or in the relative proportions of incident versus prevalent and symptomatic versus asymptomatic infections in these two settings. Second, limitations are inherent in any cost‐effectiveness analysis when definitive data do not exist on the probability of some or all outcomes. The natural history of upper genital tract infection and the incidence of long‐term sequelae may be modified by antibiotic therapy, or may vary in women with symptomatic versus asymptomatic PID. Although representative of many FP and STD clinics, the direct costs used in our model may underestimate costs in other settings, such as private physicians' offices. Third, lack of data on duration and consistency of current contraceptive use limited our ability to demonstrate an association with chlamydial infection. Fourth, we did not include several less common but costly outcomes in which C. trachomatis may play a causative role, such as low birth weight,57 postpartum endometritis, and premature labor58,59; more precise data on the risks of these outcomes will be required for consideration in future analyses. Finally, as for most cost‐effectiveness analyses, the actual costs incurred or saved are imprecise; the comparative costs of the various strategies are more important than absolute costs.

The CDC recently issued recommendations for selective screening of chlamydial infections in women.1 When applied to our sample of FP clients, the CDC criteria had a sensitivity of 89%, compared with 74% for our criteria, but required screening 72% of women rather than 53%. In our STD clients, the CDC criteria had a slightly lower sensitivity than our own (91% vs. 94%), and would have required screening 70% of women rather than 77%. The CDC criteria are distinguished from ours primarily by their inclusion of nonbarrier or no contraceptive use as an indication for screening in women older than 20 years of age. In our study, the absence of an association between chlamydial infection and lack of barrier contraceptive use was unexpected; however, our subjects provided information regarding only current contraceptive use, and none on duration or consistency of use. In addition, we found substantial variability in reported barrier use among FP clients across the four states, which may reflect a general difficulty in reliably obtaining or recording this information in nonresearch clinical settings. Accordingly, contraceptive method may not be a practical selective screening criterion in some settings. Nevertheless, reliable contraceptive history collected from individual patients may prove useful in a decision to screen. Comprehensive analysis of the performance of the CDC's screening criteria in our study population will be published separately.

The results of our study imply a need to modify the approach to C. trachomatis screening in many FP and STD programs. Many STD programs screen universally, whereas most FP programs screen selectively, but our findings support the reverse strategy: at chlamydia prevalences common in most FP clinics (i.e., >3%) universal screening is preferred, whereas selective screening appears cost‐effective at the intermediate prevalences (i.e., <7%) currently seen in many STD clinics. However, the minimal cost associated with proceeding to universal screening in STD clinics should be taken into account, particularly for clinics in which prevalence falls between 6.5% and 7.3% (the 95% CI limits on the break‐even prevalence in our STD population); such clinics may elect to continue universal screening. For most STD clinics, where the chlamydia prevalence is greater than 7.3%, universal screening is the recommended strategy. The performance of selective screening criteria may change as chlamydia prevalence falls,19 and should be reevaluated periodically.

Back to Top | Article Outline

References

1. Centers for Disease Control and Prevention. Recommendations for the prevention and management of Chlamydia trachomatis infections, 1993. MMWR Morb Mortal Wkly Rep 1993; 42(No. RR-12):1–9.

2. Washington AE, Johnson RE, Sanders LL. Chlamydia trachomatis infections in the United States: What are they costing us? JAMA 1987; 257:2070–2072.

3. American Social Health Association. Update on fiscal year 1994: Funding for the STD Program of the CDC and NIH. Sex Transm Dis 1994; 21:55–58.

4. Stamm WE, Holmes KK. Chlamydia trachomatis infections of the adult. In: Holmes KK, Mårdh P-A, Sparling PF, et al, eds. Sexually transmitted diseases. 2nd ed. New York: McGraw-Hill; 1990:181–193.

5. Stamm WE. Toward control of sexually transmitted chlamydial infections. Ann Intern Med 1993; 119:432–434.

6. Hillis SD, Joesoef R, Marchbanks PA, Wasserheit JN, Cates W, Westrom L. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. Am J Obstet Gynecol 1993; 168:1503–1509.

7. Weinstock HS, Bolan GA, Kohn R, Balladares C, Back A, Oliva G. Chlamydia trachomatis infection in women: A need for universal screening in high prevalence populations? Am J Epidemiol 1992; 135:41–47.

8. Trachtenberg AI, Washington AE, Halldorson S. A cost-based decision analysis for chlamydia screening in California family planning clinics. Obstet Gynecol 1988; 71:101–108.

9. Humphreys JT, Henneberry JF, Rickard RS, Beebe JL. Costbenefit analysis of selective screening criteria for Chlamydia trachomatis infection in women attending Colorado family planning clinics. Sex Transm Dis 1991; 19:47–53.

10. Handsfield HH, Jasman LL, Roberts PL, Hanson VW, Kothenbeutel RL, Stamm WE. Criteria for selective screening for Chlamydia trachomatis infection in women attending family planning clinics. JAMA 1986; 255:1730–1734.

11. Addiss DG, Vaughn ML, Golubjatnikov R, Pfister J, Kurtycz DF, Davis JP. Chlamydia trachomatis infection in women attending urban Midwestern family planing and community health clinics: Risk factors, selective screening, and evaluation of non-culture techniques. Sex Transm Dis 1990; 17:138–146.

12. Winter L, Goldy AS, Baer C. Prevalence and epidemilogic correlates of Chlamydia trachomatis in rural and urban populations. Sex Transm Dis 1990; 17:30–36.

13. Magder LS, Harrison RH, Ehret JM, Anderson TS, Judson FN. Factors related to genital Chlamydia trachomatis and its diagnosis by culture in a sexually transmitted disease clinic. Am J Epidemiol 1988; 128:298–308.

14. Kent GP, Harrison HR, Berman SM, Keenlyside RA. Screening for Chlamydia trachomatis infection in a sexually transmitted disease clinic: Comparison of diagnostic tests with clinical and historical risk factors. Sex Transm Dis 1988; 15:51–57.

15. Winter L, Goldy AS, Baer C. Prevalence and epidemiologic correlates of Chlamydia trachomatis in rural and urban populations. Sex Transm Dis 1990; 17:30–36.

16. Sellors JW, Pickard L, Gafni A, et al. Effectiveness and efficiency of selective vs. universal screening for chlamydial infection in sexually active young women. Arch Intern Med 1992; 152:1837–1844.

17. Magder LS, Harrison RH, Ehret JM, Anderson TS, Judson FN. Factors related to genital Chlamydia trachomatis and its diagnosis by culture in a sexually transmitted disease clinic. Am J Epidemiol 1988; 128:298–308.

18. Britten TF, DeLisle S, Fine D. STDs and family planning clinics: A regional program for Chlamydia control that works. Am J Gynecol Health 1992; 6(3):24–31.

19. Addiss DG, Vaughn ML, Ludka D, Pfister J, Davis JP. Decreased prevalence of Chlamydia trachomatis infection associated with a selective screening program in family planning clinics in Wisconsin. Sex Transm Dis 1993; 20:28–35.

20. Stamm WE, Harrison HR, Alexander ER, Cles LD, Spence MR, Quinn TC. Diagnosis of Chlamydia trachomatis infection by direct immunofluorescence staining of genital secretions: A multicenter trial. Ann Intern Med 1984;101:683–41.

21. Clark A, Stamm WE, Gaydos C, et al. Multicenter evaluation of the AntigEnz chlamydia enzyme immunoassay for diagnosis of Chlamydia trachomatis genital infection. J Clin Microbiol 1992; 30:2762–2764.

22. Kluytmans JA, Niesters HG, Mouton JW, et al. Performance of a nonisotopic DNA probe for detection of Chlamydia trachomatis in urogenital specimens. J Clin Microbiol 1991; 29:2685–2689.

23. Stamm WE, Tamm MR, Koester M, Cles LD. Detection of Chlamydia trachomatis inclusions in McCoy cell cultures with fluorescein-conjugated monoclonal antibodies. J Clin Microbiol 1983; 17:666–668.

24. Eisenberg JM. A guide to the economic analysis of clinical practices. JAMA 1989; 262:2879–2886.

25. Udvarhelyi IS, Colditz GA, Rai A, Epstein AM. Cost-effectiveness and cost-benefit analyses in the medical literature: Are the methods being used correctly? Ann Intern Med 1992; 116:238–244.

26. Stamm WE, Mårdh P-A. Chlamydia trachomatis. In: Holmes KK, Mårdh P-A, Sparling PF, et al, eds. Sexually transmitted diseases. 2nd ed. New York: McGraw-Hill; 1990:917–925.

27. Dille BJ, Butzen CC, Birkenmeyer LG. Amplification of Chlamydia trachomatis DNA by ligase chain reaction. J Clin Microbiol 1993; 31:729–731.

28. Chernesky MA, Lee H, Schachter J, et al. Diagnosis of Chlamydia trachomatis urethral infection in symptomatic and asymptomatic men by testing first-void urine in a ligase chain reaction assay. J Infect Dis 1994; 170:1308–1311.

29. Lee H, Chernesky MA, Schachter J, et al. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 1995; 345:213–216.

30. Statistical Abstracts of the U.S., 1993. Table No. 756: Consumer Price by Major Groups: 1960 to 1992; Table No. 163: Consumer Price Indexes of Medical Prices: 1970 to 1992. Washington, DC: Department of Commerce, Bureau of the Census, 1993.

31. Rolfs RT, Galaid EI, Zaidi AA. Pelvic inflammatory disease: Trends in hospitalizations and office visits, 1979 through 1988. Am J Obstet Gynecol 1992; 166:983–990.

32. Centers for Disease Control and Prevention. A Practical Guide to Prevention Effectiveness: Decision and Economic Analyses. Atlanta, GA: Epidemiology Program Office; 1994.

33. Washington AE, Arno PS, Brooks MA. The economic cost of pelvic inflammatory disease. JAMA 1986; 255:1735–1738.

34. Stamm WE, Guinan ME, Johnson C, Starcher T, Holmes KK, McCormack WM. Effect of treatment regimens for N. gonorrhoeae on simultaneous infection with C. trachomatis. N Engl J Med 1984; 310:545–549.

35. Paavonen J, Kiviat N, Brunham RC, et al. Prevalence and manifestations of endometritis among women with cervicitis. Am J Obstet Gynecol 1985; 152:280–286.

36. Cumining DC, Honore LH, Scott JZ, Williams KE. Microscopic evidence of silent inflammation in grossly normal fallopian tubes with ectopic pregnancy. Int J Fertil 1988; 33:324–328.

37. Cates W, Joesoef MR, Goldman MB. Atypical pelvic inflammatory disease: Can we identify the clinical predictors? Am J Obstet Gynecol 1993; 169:341–346.

38. Cates W, Wasserheit JN. Genital chlamydial infections: Epidemiology and reproductive sequelae. Am J Obstet Gynecol 1991; 164:1771–1781.

39. Westrom L, Bengtsson LPH, Mårdh P-A. Incidence, trends, and risks of ectopic pregnancy in a population of women. Br Med J 1981; 282:15–18.

40. Westrom L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility: A cohort study of 1844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis 1992; 19:185–192.

41. Brunham RC, Maclean IW, Binns B, Peeling RW. Chlamydia trachomatis: Its role in tubal infertility. J Infect Dis 1985; 152:1275–1282.

42. Cates W, Rolfs RT, Aral SO. Sexually transmitted diseases, pelvic inflammatory disease, and infertility: An epidemiologic update. Epidemiol Rev 1990; 12:199–220.

43. Sellors JW, Mahoney JB, Chernesky MA, Rath DJ. Tubal factor infertility: An association with prior chlamydial infection and asymptomatic salpingitis. Fertil Steril 1988; 49:451–457.

44. Svensson L, Mårdh PA, Westrom L. Infertility after acute salpingitis with special reference to Chlamydia trachomatis. Fertil Steril 1983; 40:322–329.

45. Hirsch MB, Mosher WD. Characteristics of infertile women in the United States and their use of infertility services. Fertil Steril 1987; 47:618–625.

46. Westrom L. Incidence, prevalence, and trends of acute pelvic inflammatory disease and its consequences in industrialized countries. Am J Obstet Gynecol 1980; 138:880–892.

47. Schachter J, Grossman M, Sweet RL, Holt J, Jordan C, Bishop E. Prospective study of perinatal transmission of Chlamydia trachomatis. JAMA 1986; 255:3374–3377.

48. Hammerschlag MR, Anderlea M, Semine DZ, McComb D, McCormack WM. Prospective study of maternal and infertile infection with Chlamydia trachomatis. Pediatrics 1979; 64:142–148.

49. Tartaglione TA, Russo ME. Pharmacology of drugs used in venereology. In: Holmes KK, Mårdh P-A, Sparling PF, et al, eds. Sexually transmitted diseases. 2nd ed. New York: McGraw-Hill; 1990:993–1019.

50. Katz BP, Caine VA, Jones RB. Estimation of transmission probabilities for chlamydial infection. In: Bowie WR, Caldwell HD, Jones RB, et al, eds. Chlamydia infections. New York: Cambridge University Press; 1990:567–570.

51. Viscidi RP, Bobo L, Hook EW, Quinn TC. Transmission of Chlamydia trachomatis among sex partners assessed by polymerase chain reaction. J Infect Dis 1993; 168:488–492.

52. Stamm WE, Cole B. Asymptomatic Chlamydia trachomatis urethritis in men. Sex Transm Dis 1986; 13:163–165.

53. Stergachis A, Scholes D, Heidrich FE, Sherer DM, Holmes KK, Stamm WE. Selective screening for Chlamydia trachomatis infection in a primary care population of women. Am J Epidemiol 1993; 138:143–153.

54. Nettleman MD, Jones RB, Roberts SD, et al. Cost-effectiveness of culturing for Chlamydia trachomatis: A study in a clinic for sexually transmitted diseases. Ann Intern Med 1986; 105:189–196.

55. Phillips RS, Aronson MD, Taylor WC, Safran C. Should tests for Chlamydia trachomatis cervical infection be done during routine gynecologic visits? Ann Intern Med 1987; 107:188–194.

56. Genc M, Mårdh P-A. A cost-effectiveness analysis of screening and treatment for Chlamydia trachomatis infection in asymptomatic women. Ann Intern Med 1996; 124:1–7.

57. Wager GP, Martin DH, Koutsky L, et al. Puerperal infectious morbidity: Relationship to route of delivery and to antepartum Chlamydia trachomatis infection. Am J Obstet Gynecol 1980; 138:1028–1033.

58. Martius J, Krohn MA, Hillier SL, Stamm WE, Holmes KK, Eschenbach DE. Relationship of vaginal Lactobacillus species, cervical Chlamydia trachomatis, and bacterial vaginosis to preterm birth. Obstet Gynecol 1988; 71:89–95.

59. Gravett MG, Nelson HP, DeRouen T, Critchlow C, Eschenbach DA, Holmes KK. Independent associations of bacterial vaginosis and Chlamydia trachomatis infection with adverse pregnancy outcome. JAMA 1986; 256:1899–1903.

Cited By:

This article has been cited 120 time(s).

Journal of Infectious Diseases
Selective testing criteria for gonorrhea among young women screened for chlamydial infection: Contribution of race and geographic prevalence
Manhart, LE; Marrazzo, JM; Fine, DN; Kerani, RP; Golden, MR
Journal of Infectious Diseases, 196(5): 731-737.
10.1086/520517
CrossRef
Perspectives on Sexual and Reproductive Health
The estimated direct medical cost of sexually transmitted diseases among American youth, 2000
Chesson, HW; Blandford, JM; Gift, TL; Tao, GY; Irwin, KL
Perspectives on Sexual and Reproductive Health, 36(1): 11-19.

Sexually Transmitted Diseases
Healthcare utilization by women in a comprehensive managed care population subsequent to diagnosis of a sexually transmitted disease
Wilson, SR; Brown, NL; Leyden, WA; Manos, MM; Chin, V; Levin, D; Braverman, P; Shapiro, S; Lavori, PW
Sexually Transmitted Diseases, 29(): 678-688.

Enfermedades Infecciosas Y Microbiologia Clinica
Prevalence of Chlamydia trachomatis infection, as evaluated by molecular biology methods
Domingo, AA; Sune, TP; Colomo, BS; Garcia, LS; Montosa, JX; Escursell, OC; Lopez, MAL; Grau, GC
Enfermedades Infecciosas Y Microbiologia Clinica, 20(5): 205-207.

American Journal of Preventive Medicine
STD risk assessment and chlamydia screening: What's missing?
Handsfield, HH
American Journal of Preventive Medicine, 18(2): 183-185.

Sexually Transmitted Diseases
Cost-effectiveness of screening swab or urine specimens for Chlamydia trachomatis from young Canadian women in Ontario
Goeree, R; Jang, D; Blackhouse, G; Chong, S; Mahony, J; Sellors, J; Foy, A; Chernesky, M
Sexually Transmitted Diseases, 28(): 701-709.

Sexually Transmitted Infections
Cost effectiveness analysis of a population based screening programme for asymptomatic Chlamydia trachomatis infections in women by means of home obtained urine specimens
van Valkengoed, IGM; Postma, MJ; Morre, SA; van den Brule, AJC; Meijer, CJLM; Bouter, LM; Boeke, AJP
Sexually Transmitted Infections, 77(4): 276-282.

Sexually Transmitted Infections
A new visual indicator of chlamydial cervicitis?
Sellors, JW; Walter, SD; Howard, M
Sexually Transmitted Infections, 76(1): 46-48.

Annals of Internal Medicine
Community-based urine screening for Chlamydia trachomatis with a ligase chain reaction assay
Marrazzo, JM; White, CL; Krekeler, B; Celum, CL; Lafferty, WE; Stamm, WE; Handsfield, HH
Annals of Internal Medicine, 127(9): 796-&.

Sexually Transmitted Infections
One to one interventions to reduce sexually transmitted infections and under the age of 18 conceptions: a systematic review of the economic evaluations
Barham, L; Lewis, D; Latimer, N
Sexually Transmitted Infections, 83(6): 441-447.
10.1136/sti.2007.025361
CrossRef
Daru-Journal of Faculty of Pharmacy
Detection of Chlamydia trachomatis in endocervical specimens by an enzyme-linked polymerase chain reaction assay
Hashemi, FB; Pourakbari, B; Mamishi, S; Mirsalehian, A; Zaeimi, YJ
Daru-Journal of Faculty of Pharmacy, 15(2): 100-104.

Journal of Adolescent Health
Gonorrhea and chlamydia screening among young women: Stage of change, decisional balance, and self-efficacy
Banikarim, C; Chacko, MR; Wiemann, CM; Smith, PB
Journal of Adolescent Health, 32(4): 288-295.
10.1016/S1054-139X(02)00706-1
CrossRef
Archives of Pediatrics & Adolescent Medicine
Urine-based screening of adolescents in detention to guide treatment for gonococcal and chlamydial infections - Translating research into intervention
Oh, MK; Smith, KR; O'Cain, M; Kilmer, D; Johnson, J; Hook, EW
Archives of Pediatrics & Adolescent Medicine, 152(1): 52-56.

International Journal of Std & AIDS
High-risk sexual behaviours and genital chlamydial infections in high school students in Southern Taiwan
Hsieh, YH; Shih, TY; Lin, HW; Hsieh, TC; Kuo, MJ; Lin, CW; Gaydos, CA
International Journal of Std & AIDS, 21(4): 253-259.
10.1258/ijsa.2009.008512
CrossRef
Journal of Adolescent Health
Efficacy of a Motivational Behavioral Intervention to Promote Chlamydia and Gonorrhea Screening in Young Women: A Randomized Controlled Trial
Chacko, MR; Wiemann, CM; Kozinetz, CA; von Sternberg, K; Velasquez, MM; Smith, PB; DiClemente, R
Journal of Adolescent Health, 46(2): 152-161.
10.1016/j.jadohealth.2009.06.012
CrossRef
Annals Academy of Medicine Singapore
Prevalence of Chlamydia trachomatis in Singaporean Women Undergoing Termination of Pregnancy
Gopalakrishnakone, D; Appan, DP; Singh, K
Annals Academy of Medicine Singapore, 38(5): 457-460.

Journal of Clinical Microbiology
Evaluation of the digene hybrid capture II assay with the rapid capture system for detection of Chlamydia trachomatis and Neisseria gonorrhoeae
Van der Pol, B; Williams, JA; Smith, NJ; Batteiger, BE; Cullen, AP; Erdman, H; Edens, T; Davis, K; Salim-Hammad, H; Chou, VW; Scearce, L; Blutman, J; Payne, WJ
Journal of Clinical Microbiology, 40(): 3558-3564.
10.1128/JCM.40.10.3558-3564.2002
CrossRef
Sexually Transmitted Infections
Knowledge of Chlamydia trachomatis infection in genitourinary medicine clinic attenders
Kellock, DJ; Piercy, H; Rogstad, KE
Sexually Transmitted Infections, 75(1): 36-40.

Jama-Journal of the American Medical Association
Screening asymptomatic women for Chlamydia trachomatis - Abstract and commentary
Handsfield, HH
Jama-Journal of the American Medical Association, 280(): 1800-1801.

New England Journal of Medicine
Chlamydia trachomatis infections in female military recruits
Gaydos, CA; Howell, MR; Pare, B; Clark, KL; Ellis, DA; Hendrix, RM; Gaydos, JC; McKee, KT; Quinn, TC
New England Journal of Medicine, 339(): 739-744.

Australian & New Zealand Journal of Obstetrics & Gynaecology
The importance of chlamydial infections in obstetrics and gynaecology: An update
Currie, MJ; Bowden, FJ
Australian & New Zealand Journal of Obstetrics & Gynaecology, 47(1): 2-8.
10.1111/j.1479-828X.2006.00670.x
CrossRef
Sexually Transmitted Infections
Prevalence and determinants of Chlamydia trachomatis infections in women from Bogota, Colombia
Molano, M; Weiderpass, E; Posso, H; Morre, SA; Ronderos, M; Franceschi, S; Arslan, A; Meijer, CJLM; Munoz, N; van den Brule, AJC
Sexually Transmitted Infections, 79(6): 474-478.

Clinical Infectious Diseases
Value of self-reportable screening criteria to identify asymptomatic individuals in the general population for urogential Chlamydia trachomatis infection screening
Andersen, B; van Valkengoed, I; Olesen, F; Moller, JK; Ostergaard, L
Clinical Infectious Diseases, 36(7): 837-844.

Archives of Pediatrics & Adolescent Medicine
Screening for chlamydia in adolescents and young women
Mangione-Smith, R; McGlynn, EA; Hiatt, L
Archives of Pediatrics & Adolescent Medicine, 154(): 1108-1113.

Public Health Reports
Infertility: From a personal to a public health problem
Fidler, AT; Bernstein, J
Public Health Reports, 114(6): 494-511.

Sexually Transmitted Infections
Low diagnostic accuracy of selective screening criteria for asymptomatic Chlamydia trachomatis infections in the general population
van Valkengoed, IGM; Morre, SA; van den Brule, AJC; Meijer, CJLM; Deville, W; Bouter, LM; Boeke, AJP
Sexually Transmitted Infections, 76(5): 375-380.

Health Technology Assessment
Epidemiological, social, diagnostic and economic evaluation of population screening for genital chlamydial infection
Low, N; McCarthy, A; Macleod, J; Salisbury, C; Campbell, R; Roberts, TE; Horner, P; Skidmore, S; Sterne, JAC; Sanford, E; Ibrahim, F; Holloway, A; Patel, R; Barton, PM; Robinson, SM; Mills, N; Graham, A; Herring, A; Caul, EO; Smith, GD; Hobbs, FDR; Ross, JDC; Egger, M
Health Technology Assessment, 11(8): 1-+.

International Journal of Std & AIDS
Chlamydia trachomatis infection in a rural population: the importance of screening men
Michelson, KN; Thomas, JC; Boyd, C; Janssens, AH
International Journal of Std & AIDS, 10(1): 32-37.

Value in Health
Systematic screening for Chlamydia trachomatis: Estimating cost-effectiveness using dynamic modeling and Dutch data
de Vries, R; van Bergen, JEAM; de Jong-van den Berg, LTW; Postma, MJ
Value in Health, 9(1): 1-11.
10.1111/j.1524-4733.2006.00075.x
CrossRef
Human Reproduction
Chlamydia trachomatis in infertile women undergoing uterine instrumentation: Screen or treat
Ng, EHY; Ngai, CSW; Ho, PC
Human Reproduction, 17(8): 2215-2216.

Sexually Transmitted Infections
Chlamydia trachomatis prevalence and sexual behaviour among female adolescents in Belgium
Vuylsteke, B; Vandenbruaene, M; Vandenbulcke, P; Van Dyck, E; Laga, M
Sexually Transmitted Infections, 75(3): 152-155.

Jama-Journal of the American Medical Association
Incident Chlamydia trachomatis infections among inner-city adolescent females
Burstein, GR; Gaydos, CA; Diener-West, M; Howell, MR; Zenilman, JM; Quinn, TC
Jama-Journal of the American Medical Association, 280(6): 521-526.

American Journal of Managed Care
STD prevention and treatment guidelines: A review from a managed care perspective
Scholes, D; Anderson, LA; Operskalski, BH; BlueSpruce, J; Irwin, K; Magid, DJ
American Journal of Managed Care, 9(2): 181-189.

International Family Planning Perspectives
Strategies for detection of sexually transmitted infection among family planning clients in Jamaica
Ward, E; Spruyt, A; Fox, L; Johnson, L; Wong, E; Behets, F; Figueroa, JP; Morris, J
International Family Planning Perspectives, 27(4): 201-207.

Acta Obstetricia Et Gynecologica Scandinavica
Screening for Chlamydia trachomatis in asymptomatic women in Hungary - An epidemiological and cost-effectiveness analysis
Nyari, T; Nyari, C; Woodward, M; Meszaros, G; Deak, J; Nagy, E; Kovacs, L
Acta Obstetricia Et Gynecologica Scandinavica, 80(4): 300-306.

Human Reproduction Update
Epidemiology of Chlamydia trachomatis infection in women and the cost-effectiveness of screening
Land, JA; Van Bergen, JEAM; Morre, SA; Postma, MJ
Human Reproduction Update, 16(2): 189-204.
10.1093/humupd/dmp035
CrossRef
Infectious Disease Clinics of North America
Sexual tourism: Implications for travelers and the destination culture
Marrazzo, JM
Infectious Disease Clinics of North America, 19(1): 103-+.
10.1016/j.idc.2004.10.008
CrossRef
Sexually Transmitted Infections
Establishing the National Chlamydia Screening Programme in England: results from the first full year of screening
LaMontagne, DS; Fenton, KA; Randall, S; Anderson, S; Carter, P
Sexually Transmitted Infections, 80(5): 335-341.
10.1136/sti.2004.012856
CrossRef
Contraception
Failure of family-planning referral and high interest in advanced provision emergency contraception among women contacted for STD partner notification
Golden, MR; Whittington, WLH; Handsfield, HH; Clark, A; Malinski, C; Helmers, JR; Hogben, M; Holmes, KK
Contraception, 69(3): 241-246.
10.1016/j.contraception.2003.10.018
CrossRef
Annals of Internal Medicine
Screening for Chlamydia trachomatis in asymptomatic women attending family planning clinics - A cost-effectiveness analysis of three strategies
Howell, MR; Quinn, TC; Gaydos, CA
Annals of Internal Medicine, 128(4): 277-+.

Deutsche Medizinische Wochenschrift
Chlamydia trachomatis infections - a time for action?
Mylonas, I; Kirschner, W; Weissenbacher, T; Gingelmaier, A; Weissenbacher, ER; Friese, K
Deutsche Medizinische Wochenschrift, 132(): 1170-1176.

Academic Emergency Medicine
Adult and pediatric emergency department sexually transmitted disease and HIV screening: Programmatic overview and outcomes
Mehta, SD; Hall, J; Lyss, SB; Skolnik, PR; Pealer, LN; Kharasch, S
Academic Emergency Medicine, 14(3): 250-258.
10.1197/j.aem.2006.10.106
CrossRef
Sexually Transmitted Infections
Chlamydia trachomatis prevalence in men in the mid-west of Ireland
Powell, J; O'Connor, C; O'hlarlaithe, M; Saunders, J; de Freitas, J
Sexually Transmitted Infections, 80(5): 349-353.
10.1136/sti.2003.008615
CrossRef
American Journal of Preventive Medicine
Chlamydia trachomatis infection in asyniptomatic men
LaMontagne, DS; Fine, DN; Marrazzo, JM
American Journal of Preventive Medicine, 24(1): 36-42.
PII S074903797(02)00573-1
CrossRef
Sexually Transmitted Infections
Cost effectiveness of screening for Chlamydia trachomatis: a review of published studies
Honey, E; Augood, C; Templeton, A; Russell, I; Paavonen, J; Mardh, PA; Stary, A; Stray-Pedersen, B
Sexually Transmitted Infections, 78(6): 406-412.

Scandinavian Journal of Infectious Diseases
Pooling of urine specimens allows accurate and cost-effective genetic detection of Chlamydia trachomatis in Lithuania and other low-resource countries
Butylkina, R; Juseviciute, V; Kasparaviciene, G; Vagoras, A; Pagirskas, E; Unemo, M; Domeika, M
Scandinavian Journal of Infectious Diseases, 39(3): 209-212.
10.1080/00365540600978914
CrossRef
Sexually Transmitted Infections
Modelling the healthcare costs of an opportunistic chlamydia screening programme
Adams, EJ; LaMontagne, DS; Johnston, AR; Pimenta, JM; Fenton, KA; Edmunds, WJ
Sexually Transmitted Infections, 80(5): 363-370.
10.1136/sti.2004.009654
CrossRef
Obstetrics and Gynecology Clinics of North America
Developments in the screening for Chlamydia trachomatis: a review
Kohl, KS; Markowitz, LE; Koumans, EH
Obstetrics and Gynecology Clinics of North America, 30(4): 637-+.
10.1016/S0889-8545(03)00076-7
CrossRef
Preventive Medicine
Prevalence and correlates of Chlamydia trachomatis among sexually active African-American adolescent females
Williams, KM; Wingood, GM; DiClemente, RJ; Crosby, RA; McCree, DH; Liau, A; Harrington, K; Davies, S; Hook, EW; Kim, M
Preventive Medicine, 35(6): 593-600.
10.1006/pmed.2002.1112
CrossRef
American Journal of Epidemiology
Comparative model-based analysis of screening programs for Chlamydia trachomatis infections
Kretzschmar, M; Welte, R; van den Hoek, A; Postma, MJ
American Journal of Epidemiology, 153(1): 90-101.

British Journal of General Practice
Follow-up, treatment, and reinfection rates among asymptomatic Chlamydia trachomatis cases in general practice
van Valkengoed, IGM; Morre, SA; van den Brule, AJC; Meijer, CJLM; Bouter, LM; van Eijk, JTM; Boeke, AJP
British Journal of General Practice, 52(): 623-627.

Sexually Transmitted Diseases
Results of a screening program for Chlamydia trachomatis infection in men attending a sexually transmitted diseases clinic
Urban, MA; CouryDoniger, P; Reichman, RC
Sexually Transmitted Diseases, 24(): 587-592.

Sexual Health
Prevalence of Chlamydia trachomatis in a public colposcopy clinic population
Petersen, RW; Tabrizi, SN; Garland, S; Quinlivan, JA
Sexual Health, 4(2): 133-136.
10.1071/SH06050
CrossRef
Sexually Transmitted Infections
Screening for Chlamydia trachomatis: a systematic review of the economic evaluations and modelling
Roberts, TE; Robinson, S; Barton, P; Bryan, S; Low, N
Sexually Transmitted Infections, 82(3): 193-200.
10.1136/sti.2005.017517
CrossRef
Public Health
Modelling the impact of opportunistic screening on the sequelae and public healthcare costs of infection with Chlamydia trachomatis in Australian women
Ward, B; Rodger, AJ; Jackson, TJ
Public Health, 120(1): 42-49.
10.1016/j.puhe.2005.03.002
CrossRef
Journal of Urban Health-Bulletin of the New York Academy of Medicine
Cost-effectiveness of universal screening for chlamydia and gonorrhea in US jails
Kraut-Becher, JR; Gift, TL; Haddix, AC; Irwin, KL; Greifinger, RB
Journal of Urban Health-Bulletin of the New York Academy of Medicine, 81(3): 453-471.
10.1093/jurban/jth130
CrossRef
Sexually Transmitted Infections
Provider willingness to screen all sexually active adolescents for chlamydia
Boekeloo, BO; Snyder, MH; Bobbin, M; Burstein, GR; Conley, D; Quinn, TC; Zenilman, JM
Sexually Transmitted Infections, 78(5): 369-373.

Pharmacoeconomics
Azithromycin - A pharmacoeconomic review of its use as a single-dose regimen in the treatment of uncomplicated urogenital Chlamydia trachomatis infections in women
Lea, AP; Lamb, HM
Pharmacoeconomics, 12(5): 596-615.

International Journal of Epidemiology
Overestimation of complication rates in evaluations of Chlamydia trachomatis screening programmes - implications for cost-effectiveness analyses
van Valkengoed, IGM; Morre, SA; van den Brule, AJC; Meijer, CJLM; Bouter, LM; Boeke, AJP
International Journal of Epidemiology, 33(2): 416-425.
10.1093/ije/dyh029
CrossRef
International Journal of Epidemiology
What should we do about screening for genital chlamydia?
Low, N; Egger, M
International Journal of Epidemiology, 31(5): 891-893.

International Journal of Std & AIDS
Sensitivity evaluation of the Gen-Probe AMP-CT assay by pooling urine samples for the screening of Chlamydia trachomatis urogenital infection
Gomes, JP; Viegas, S; Paulino, A; Catry, MA
International Journal of Std & AIDS, 13(8): 540-542.

Contraception
Use of sexually transmitted disease risk assessment algorithms for selection of intrauterine device candidates
Morrison, CS; Sekadde-Kigondu, C; Miller, WC; Weiner, DH; Sinei, SK
Contraception, 59(2): 97-106.

Archives of Pediatrics & Adolescent Medicine
Is the routine pelvic examination needed with the advent of urine-based screening for sexually transmitted diseases?
Shafer, MAB; Pantell, RH; Schachter, JH
Archives of Pediatrics & Adolescent Medicine, 153(2): 119-125.

American Journal of Medical Quality
Sexually transmitted diseases and managed care: An inquiry and review of issues affecting service delivery
Chorba, T; Scholes, D; BlueSpruce, J; Operskalski, BH; Irwin, K
American Journal of Medical Quality, 19(4): 145-156.

International Journal of Std & AIDS
Prevalence and risk factors of asymptomatic chlamydial infection among students in Japan
Imai, H; Shinohara, H; Nakao, H; Tsukino, H; Hamasuna, R; Katoh, T
International Journal of Std & AIDS, 15(6): 408-414.

Sexually Transmitted Diseases
Optimal resource allocation for curing Chlamydia trachomatis infection among asymptomatic women at clinics operating on a fixed budget
Tao, G; Gift, TL; Walsh, CM; Irwin, KL; Kassler, WJ
Sexually Transmitted Diseases, 29(): 703-709.

Sexually Transmitted Infections
Chlamydia trachomatis diagnostics
Chernesky, MA
Sexually Transmitted Infections, 78(4): 232-234.

Sexually Transmitted Infections
Testing commercial sex workers for chlamydia and gonorrhoea on outreach
Macauley, S; Creighton, S
Sexually Transmitted Infections, 85(3): 231-232.
10.1136/sti.2008.034199
CrossRef
American Journal of Preventive Medicine
Multicomponent Internet continuing medical education to promote chlamydia screening
Allison, JJ; Kiefe, CI; Wall, T; Casebeer, L; Ray, MN; Spettell, CM; Hook, EW; Oh, MK; Person, SD; Weissman, NW
American Journal of Preventive Medicine, 28(3): 285-290.
10.1016/j.amepre.2004.12.013
CrossRef
Japanese Journal of Infectious Diseases
Neisseria gonorrhoea, Chlamydia trachomatis, and Treponema pallidum infection in antenatal and gynecological patients at Korle-Bu teaching hospital, Ghana
Apea-Kubi, KA; Yamaguchi, S; Sakyi, B; Kisimoto, T; Ofori-Adjei, D; Hagiwara, T
Japanese Journal of Infectious Diseases, 57(6): 253-256.

Pharmacoeconomics
Chlamydia trachomatis in adolescents and adults - Clinical and economic implications
Marra, CA; Patrick, DM; Reynolds, R; Marra, F
Pharmacoeconomics, 13(2): 191-222.

Bjog-An International Journal of Obstetrics and Gynaecology
An evaluation of economics and acceptability of screening for Chlamydia trachomatis infection, in women attending antenatal, abortion, colposcopy and family planning clinics in Scotland, UK
Norman, JE; Wu, O; Twaddle, S; Macmillan, S; McMillan, L; Templeton, A; McKenzie, H; Noone, A; Allardice, G; Reid, M
Bjog-An International Journal of Obstetrics and Gynaecology, 111(): 1261-1268.
10.1111/j.1471-0528.2004.00324.x
CrossRef
Clinical Microbiology and Infection
Large-scale testing of women in Copenhagen has not reduced the prevalence of Chlamydia trachomatis infections
Westh, H; Kolmos, HJ
Clinical Microbiology and Infection, 9(7): 619-624.

Reviews in Contemporary Pharmacotherapy
Chlamydia trachomatis genital infections and single-dose azithromycin therapy
Black, CM; Byrne, G; Carlin, E; Gruber, F; Johnson, FN; Mardh, PA; McClarty, G; Marra, F; Nuovo, J; Ostergaard, L; Paavonen, J; Patton, DL; Quinn, TC; Raulston, JE; Robinson, A; Rosenn, MF; Scholes, D; Steingrimsson, O; Worm, AM; Wyrick, PB
Reviews in Contemporary Pharmacotherapy, 11(): 139-256.

Journal of Clinical Microbiology
Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicolaou smear clinics
Gaydos, CA; Howell, MR; Quinn, TC; Gaydos, JC; McKee, KT
Journal of Clinical Microbiology, 36(5): 1300-1304.

Sexual Health
Chlamydia testing and retesting patterns at family planning clinics in Australia
Bowring, AL; Goller, JL; Gouillou, M; Harvey, C; Bateson, D; McNamee, K; Read, C; Boyle, D; Jordan, L; Wardle, R; Stephens, A; Donovan, B; Guy, R; Hellard, M
Sexual Health, 10(1): 74-81.
10.1071/SH11187
CrossRef
Obstetrics & Gynecology
Cost-Effectiveness of Screening Strategies for Gonorrhea Among Females in Private Sector Care
Bernstein, KT; Mehta, SD; Rompalo, AM; Erbelding, EJ
Obstetrics & Gynecology, 107(4): 813-821.
10.1097/01.AOG.0000204187.86600.0a
PDF (249) | CrossRef
Obstetrics & Gynecology
Results of a Program to Test Women for Rectal Chlamydia and Gonorrhea
Barry, PM; Kent, CK; Philip, SS; Klausner, JD
Obstetrics & Gynecology, 115(4): 753-759.
10.1097/AOG.0b013e3181d444f6
PDF (483) | CrossRef
Sexually Transmitted Diseases
Sexually Transmitted Infections Among Pregnant Women Attending an Antenatal Clinic in Fuzhou, China
Chen, X; Yin, Y; Chen, L; Thuy, NT; Zhang, G; Shi, M; Hu, L; Yu, Y
Sexually Transmitted Diseases, 33(5): 296-301.
10.1097/01.olq.0000194580.02116.6b
PDF (215) | CrossRef
Sexually Transmitted Diseases
Universal Screening or Prophylactic Treatment for Chlamydia trachomatis Infection Among Women Seeking Induced Abortions: Which Strategy Is More Cost-Effective?
Chen, S; Li, J; van den Hoek, A
Sexually Transmitted Diseases, 34(4): 230-236.
10.1097/01.olq.0000233739.22747.12
PDF (691) | CrossRef
Sexually Transmitted Diseases
The Rapid Test Paradox: When Fewer Cases Detected Lead to More Cases Treated: A Decision Analysis of Tests forChlamydia trachomatis
Gift, TL; Pate, MS; Hook, EW; Kassler, WJ
Sexually Transmitted Diseases, 26(4): 232-240.

PDF (5999)
Sexually Transmitted Diseases
Risk Factors for Chlamydia Among Young Women in a Northern California Juvenile Detention Facility: Implications for Community Intervention
Mcdonnell, DD; Levy, V; Morton, TJ
Sexually Transmitted Diseases, 36(2): S29-S33.
10.1097/OLQ.0b013e31815dd07d
PDF (183) | CrossRef
Sexually Transmitted Diseases
Chlamydial Infections Among Female Adolescents Screened in Juvenile Detention Centers in Washington State, 1998–2002
Lofy, KH; Hofmann, J; Mosure, DJ; Fine, DN; Marrazzo, JM
Sexually Transmitted Diseases, 33(2): 63-67.
10.1097/01.olq.0000199761.55420.e8
PDF (186) | CrossRef
Sexually Transmitted Diseases
Disappointing Performance of Literature-Derived Selective Screening Criteria for Asymptomatic Chlamydia trachomatis Infection in an Inner-City Population
VAN VALKENGOED, IG; BOEKE, AJ; MORRÉ, SA; VAN DEN BRULE, AJ; MEIJER, CJ; DEVILLÉ, W; BOUTER, LM
Sexually Transmitted Diseases, 27(9): 504-507.

Sexually Transmitted Diseases
Sexually Transmitted Disease Clinic Clients at Risk for Subsequent Gonorrhea and Chlamydia Infections: Possible ‘Core’ Transmitters
Gunn, RA; Fitzgerald, S; Aral, SO
Sexually Transmitted Diseases, 27(6): 343-349.

PDF (5705)
Sexually Transmitted Diseases
Productivity Losses Attributable to Untreated Chlamydial Infection and Associated Pelvic Inflammatory Disease in Reproductive-Aged Women
Blandford, JM; Gift, TL
Sexually Transmitted Diseases, 33(10): S117-S121.
10.1097/01.olq.0000235148.64274.2f
PDF (179) | CrossRef
Sexually Transmitted Diseases
PCR‐DetectedChlamydia trachomatisInfections From the Uterine Cervix of Young Women From the General Population: Prevalence and Risk Determinants
Munk, C; Morré, SA; Kjaer, SK; Poll, PA; Bock, JE; Meijer, CJ; Van Den Brule, AJ
Sexually Transmitted Diseases, 26(6): 325-328.

PDF (2829)
Sexually Transmitted Diseases
Adolescent Chlamydia Testing Practices and Diagnosed Infections in a Large Managed Care Organization
BURSTEIN, GR; SNYDER, MH; CONLEY, D; BOEKELOO, BO; QUINN, TC; ZENILMAN, JM
Sexually Transmitted Diseases, 28(8): 477-483.

PDF (51)
Sexually Transmitted Diseases
Re-evaluating Selective Screening Criteria for Chlamydial Infection Among Women in the U.S. Pacific Northwest
LA MONTAGNE, DS; PATRICK, LE; FINE, DN; MARRAZZO, JM; ON BEHALF OF THE REGION X INFERTILITY PREVENTION PROJECT,
Sexually Transmitted Diseases, 31(5): 283-289.

PDF (334)
Sexually Transmitted Diseases
Time to Treatment for Women With Chlamydial or Gonococcal Infections: A Comparative Evaluation of Sexually Transmitted Disease Clinics in 3 US Cities
Peterman, TA; Wong, D; Berman, SM; Furness, BW; Gunn, RA; Taylor, M
Sexually Transmitted Diseases, 32(3): 194-198.

PDF (181)
Sexually Transmitted Diseases
Generalizability of STD Screening in Urban Emergency Departments: Comparison of Results From Inner City and Urban Sites in Baltimore, Maryland
MEHTA, SD; ROMPALO, AM; ROTHMAN, RE; LONDNER, MS; ZENILMAN, JM
Sexually Transmitted Diseases, 30(2): 143-148.

PDF (189)
Sexually Transmitted Diseases
The Cost Effectiveness of Gonorrhea Screening in Urban Emergency Departments
Aledort, JE; Hook, EW; Weinstein, MC; Goldie, SJ
Sexually Transmitted Diseases, 32(7): 425-436.

PDF (851)
Sexually Transmitted Diseases
Screening for Chlamydial Infection: A Model Program Based on Prevalence
MILLER, WC
Sexually Transmitted Diseases, 25(4): 201-210.

PDF (5910)
Sexually Transmitted Diseases
Cost-Effectiveness Analysis of Screening Adolescent Males for Chlamydia On Admission to Detention
Blake, DR; Gaydos, CA; Quinn, TC
Sexually Transmitted Diseases, 31(2): 85-95.

PDF (885)
Sexually Transmitted Diseases
Screening Women forChlamydia trachomatisin Family Planning Clinics: The Cost‐Effectiveness of DNA Amplification Assays
HOWELL, MR; QUINN, TC; BRATHWAITE, W; GAYDOS, CA
Sexually Transmitted Diseases, 25(2): 108-117.

PDF (6189)
Sexually Transmitted Diseases
The Impact on Accuracy and Cost of Ligase Chain Reaction Testing by Pooling Urine Specimens for the Diagnosis ofChlamydia trachomatisInfections
Mahony, J; Chernesky, M; Krepel, J; Patel, J; Sproston, A; Hopkins, F; Jang, D
Sexually Transmitted Diseases, 26(9): 504-507.

PDF (3110)
Sexually Transmitted Diseases
Determinants of Persistent and Recurrent Chlamydia trachomatis Infection in Young Women: Results of a Multicenter Cohort Study
WHITTINGTON, WL; KENT, C; KISSINGER, P; OH, MK; FORTENBERRY, JD; HILLIS, SE; LITCHFIELD, B; BOLAN, GA; ST. LOUIS, ME; FARLEY, TA; HANDSFIELD, HH
Sexually Transmitted Diseases, 28(2): 117-123.

PDF (54)
Sexually Transmitted Diseases
Cost-Effectiveness of Screening Programs for Chlamydia trachomatis: A Population-Based Dynamic Approach
WELTE, R; KRETZSCHMAR, M; LEIDL, R; VAN DEN HOEK, A; JAGER, JC; POSTMA, MJ
Sexually Transmitted Diseases, 27(9): 518-529.

Sexually Transmitted Diseases
Cost-Effectiveness of Screening Strategies for Chlamydia trachomatis Using Cervical Swabs, Urine, and Self-Obtained Vaginal Swabs in a Sexually Transmitted Disease Clinic Setting
BLAKE, DR; MALDEIS, N; BARNES, MR; HARDICK, A; QUINN, TC; GAYDOS, CA
Sexually Transmitted Diseases, 35(7): 649-655.
10.1097/OLQ.0b013e31816ddb9a
PDF (318) | CrossRef
Sexually Transmitted Diseases
Feasibility and Short-Term Impact of Linked Education and Urine Screening Interventions for Chlamydia and Gonorrhea in Male Army Recruits
Arcari, CM; Gaydos, JC; Howell, MR; McKee, KT; Gaydos, CA
Sexually Transmitted Diseases, 31(7): 443-447.

PDF (165)
Sexually Transmitted Diseases
Sustained High Prevalence of Chlamydia trachomatis Infections in Female Army Recruits
Gaydos, CA; Howell, MR; Quinn, TC; McKee, KT; Gaydos, JC
Sexually Transmitted Diseases, 30(7): 539-544.

PDF (701)
Sexually Transmitted Diseases
Mycoplasma genitalium as a Contributor to the Multiple Etiologies of Cervicitis in Women Attending Sexually Transmitted Disease Clinics
Gaydos, C; Maldeis, NE; Hardick, A; Hardick, J; Quinn, TC
Sexually Transmitted Diseases, 36(10): 598-606.
10.1097/OLQ.0b013e3181b01948
PDF (607) | CrossRef
Sexually Transmitted Diseases
Cost-Effectiveness of Treatment Strategies for Cervical Infection Among Women at High Risk in Madagascar
McClamroch, K; Behets, F; Van damme, K; Rabenja, LN; Myers, E
Sexually Transmitted Diseases, 34(9): 631-637.
10.1097/01.olq.0000258107.75888.0e
PDF (768) | CrossRef
Sexually Transmitted Diseases
A Refined Estimate of the Average Lifetime Cost of Pelvic Inflammatory Disease
YEH, JM; HOOK, EW; GOLDIE, SJ
Sexually Transmitted Diseases, 30(5): 369-378.

PDF (1462)
Sexually Transmitted Diseases
Cost-Effectiveness of Five Strategies for Gonorrhea and Chlamydia Control Among Female and Male Emergency Department Patients
MEHTA, SD; BISHAI, D; HOWELL, MR; ROTHMAN, RE; QUINN, TC; ZENILMAN, JM
Sexually Transmitted Diseases, 29(2): 83-91.

PDF (90)
Sexually Transmitted Diseases
Should Asymptomatic Men Be Included in Chlamydia Screening Programs? Cost-Effectiveness of Chlamydia Screening Among Male and Female Entrants to a National Job Training Program
Blake, DR; Quinn, TC; Gaydos, CA
Sexually Transmitted Diseases, 35(1): 91-101.
10.1097/OLQ.0b013e31814b86f5
PDF (681) | CrossRef
Sexually Transmitted Diseases
The Clinical and Economic Consequences of Screening Young Men for Genital Chlamydial Infection
GINOCCHIO, RH; VEENSTRA, DL; CONNELL, FA; MARRAZZO, JM
Sexually Transmitted Diseases, 30(2): 99-106.

PDF (364)
Sexually Transmitted Diseases
Incidence and Prevalence of Chlamydia, Herpes, and Viral Hepatitis in a Homeless Adolescent Population
NOELL, J; ROHDE, P; OCHS, L; YOVANOFF, P; ALTER, MJ; SCHMID, S; BULLARD, J; BLACK, C
Sexually Transmitted Diseases, 28(1): 4-10.

PDF (57)
American Journal of Preventive Medicine
Screening for chlamydial infection
Nelson, HD; Helfand, M
American Journal of Preventive Medicine, 20(3): 95-107.

Combinatorial Chemistry & High Throughput Screening
Quantitation of Chlamydia trachomatis 16S rRNA using NASBA amplification and a bioluminescent microtiter plate assay
Song, X; Coombes, BK; Mahony, JB
Combinatorial Chemistry & High Throughput Screening, 3(4): 303-313.

Sexually Transmitted Infections
Adolescence and other risk factors for Chlamydia trachomatis genitourinary infection in women in Melbourne, Australia
Williams, H; Tabrizi, SN; Lee, W; Kovacs, GT; Garland, S
Sexually Transmitted Infections, 79(1): 31-34.

Family Planning Perspectives
Selective screening for chlamydial infection in women: A comparison of three sets of criteria
Marrazzo, JM; Fine, D; Celum, CL; DeLisle, S; Handsfield, HH
Family Planning Perspectives, 29(4): 158-162.

Journal of Adolescent Health
Barriers to screening sexually active adolescent women for chlamydia: A survey of primary care physicians
Cook, RL; Wiesenfeld, HC; Ashton, MR; Krohn, MA; Zamborsky, T; Scholle, SH
Journal of Adolescent Health, 28(3): 204-210.

Journal of Infectious Diseases
Chlamydia trachomatis infections: Progress and problems
Stamm, WE
Journal of Infectious Diseases, 179(): S380-S383.

Jama-Journal of the American Medical Association
The changing paradigm of sexually transmitted disease control in the era of managed health care
Gunn, RA; Rolfs, RT; Greenspan, JR; Seidman, RL; Wasserheit, JN
Jama-Journal of the American Medical Association, 279(9): 680-684.

Journal of Womens Health & Gender-Based Medicine
The silent epidemic of Chlamydia trachomatis: The urgent need for detection and treatment in women
Walsh, C; Anderson, LA; Irwin, K
Journal of Womens Health & Gender-Based Medicine, 9(4): 339-343.

European Journal of Obstetrics Gynecology and Reproductive Biology
Should all sexually active young women in Hungary be screened for Chlamydia trachomatis?
Nyari, T; Woodward, M; Kovacs, L
European Journal of Obstetrics Gynecology and Reproductive Biology, 106(1): 55-59.
PII S0301-2115(02)00222-1
CrossRef
International Journal of Urology
Sexual behavior survey and screening for chlamydia and gonorrhea in university students in South Korea
Lee, SJ; Cho, YH; Ha, US; Kim, SW; Yoon, MS; Bae, K
International Journal of Urology, 12(2): 187-193.

Sexually Transmitted Infections
Spending money to save money
Mehta, SD; Shahmanesh, M; Zenilman, JM
Sexually Transmitted Infections, 79(1): 4-6.

American Journal of Preventive Medicine
American college of preventive medicine practice policy statement - Screening for Chlamydia trachomatis
Hollblad-Fadiman, K; Goldman, SM
American Journal of Preventive Medicine, 24(3): 287-292.
10.1016/S0749-3797(02)00636-0
CrossRef
Back to Top | Article Outline

© Copyright 1997 American Sexually Transmitted Diseases Association

Login