Home Current Issue Previous Issues Published Ahead-of-Print Collections In The News Blog For Authors Journal Info
Skip Navigation LinksHome > October 15, 2009 - Volume 34 - Issue 22 > Development of a Clinical Workflow Tool to Enhance the Detec...
Spine:
doi: 10.1097/BRS.0b013e3181b2eb69
Diagnostics

Development of a Clinical Workflow Tool to Enhance the Detection of Vertebral Fractures: Accuracy and Precision Evaluation

Brett, Alan PhD*; Miller, Colin G. PhD†; Hayes, Curtis W. MD‡; Krasnow, Joel MD§; Ozanian, Takouhi PhD*; Abrams, Ken MD¶; Block, Jon E. PhD∥; van Kuijk, Cornelis MD, PhD**

Collapse Box

Abstract

Study Design. Image analysis model development.

Objective. The objective of this study was to develop a novel clinical workflow tool that uses model-based shape recognition technology to allow efficient, semiautomated detailed annotation of each vertebra between T4 and L4 on plain lateral radiographs.

Summary of Background Data. Identification of prevalent vertebral fractures, especially when not symptomatic, has been problematic despite their importance. There is a recognized need to increase the opportunities to detect vertebral fractures so that clinically beneficial therapeutic interventions can be initiated.

Methods. Radiographs obtained from 165 subjects in the Canadian Multicenter Osteoporosis Study (CaMos) were used to construct a vertebral shape model of the vertebral column from T4 to L4 using a statistical learning technique, as well as to estimate the accuracy and precision of this automated software tool for vertebral shape analysis. Radiographs showing scoliosis greater than 15° were excluded.

Results. Vertebral contours defined by 95 points per vertebra, represented by 79,895 points in total, were assessed on 841 individual vertebrae. The mean absolute accuracy error calculated over each vertebra in each test image was 1.06 ± 1.2 mm. This value corresponded to an average 3.4% of vertebral height. The mean precision error, reflecting interobserver variability, per vertebra of the resulting annotations was 0.61 ± 0.73 mm. This value corresponded to an average 2.3% of vertebral height. Accuracy and precision error estimates did not differ notably by vertebral level.

Conclusion. The results of the current study indicate that statistical modeling can provide a robust tool for the accurate and precise semiautomated annotation of vertebral body shape from T4 to L4 in patients who do not have scoliosis greater than 15°. This method may prove useful as a clinical workflow tool to aid the physician in vertebral fracture assessment and might contribute to decision-making about pharmacologic treatment of osteoporosis.

© 2009 Lippincott Williams & Wilkins, Inc.

Follow Us!

  

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.