You could be reading the full-text of this article now if you...

If you have access to this article through your institution,
you can view this article in

Biomechanics of Halo-Vest and Dens Screw Fixation for Type II Odontoid Fracture

Ivancic, Paul C. PhD; Beauchman, Naseem N. BA; Mo, Fred MD; Lawrence, Brandon D. MD

Spine:
doi: 10.1097/BRS.0b013e318195a65b
Biomechanics
Abstract

Study Design. An in vitro biomechanical study of halo-vest and odontoid screw fixation of Type II dens fracture.

Objective. The objective were to determine upper cervical spine instability due to simulated dens fracture and investigate stability provided by the halo-vest and odontoid screw, applied individually and combined.

Summary of Background Data. Previous studies have evaluated posterior fixation techniques for stabilizing dens fracture. No previous biomechanical study has investigated the halo-vest and odontoid screw for stabilizing dens fracture.

Methods. A biofidelic skull-neck-thorax model was used with 5 osteoligamentous whole cervical spine specimens. Three-dimensional flexibility tests were performed on the specimens while intact, following simulated dens fracture, and following application of the halo-vest alone, odontoid screw alone, and halo-vest and screw combined. Average total neutral zone and total ranges of motion at C0/1 and C1/2 were computed for each experimental condition and statistically compared with physiologic motion limits, obtained from the intact flexibility test. Significance was set at P < 0.05 with a trend toward significance at P < 0.1.

Results. Type II dens fracture caused trends toward increased sagittal neutral zone and lateral bending range of motion at C1/2. Spinal motions with the dens screw alone could not be differentiated from physiologic limits. Significant reductions in motion were observed at C0/1 and C1/2 in flexion-extension and axial rotation due to the halo-vest, applied individually or combined with the dens screw. At C1/2, the halo-vest combined with the dens screw generally allowed the smallest average percentages of intact motion: 3% in axial rotation, 17% in flexion-extension, and 18% in lateral bending.

Conclusion. The present reduction in C1/2 motion observed, due to the halo-vest and dens screw combined is similar to previously reported immobilization provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring. The present biomechanical data may be useful to clinicians when choosing an appropriate treatment for those with Type II dens fracture.

In Brief

The present study investigated the effectiveness of the halo-vest and odontoid screw, applied individually and combined, for stabilizing type II dens fracture. Dens fracture caused trends toward increased flexibility at C1/2. The halo-vest and dens screw combined allowed on average 3% of intact axial rotation, followed by 17% of flexion-extension and 18% of lateral bending. These results are comparable with previously reported stability provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring.

Author Information

From the Biomechanics Research Laboratory, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT.

Acknowledgment date: May 22, 2008. Revision date: September 26, 2008. Acceptance date: September 28, 2008.

The device(s)/drug(s) is/are FDA-approved or approved by corresponding national agency for this indication.

Corporate/Industry funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Address correspondence and reprint requests to Paul C. Ivancic, PhD, Biomechanics Research Laboratory, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 333 Cedar St., P.O. Box 208071, New Haven, CT 06520-8071; E-mail: paul.ivancic@yale.edu

© 2009 Lippincott Williams & Wilkins, Inc.